feed_forward_test.cu 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/fused/attn_feed_forward.h"
#include "paddle/fluid/platform/float16.h"
24
#include "paddle/phi/core/kernel_registry.h"
25
#include "paddle/phi/kernels/funcs/math_function.h"
26 27 28 29 30

namespace framework = paddle::framework;
namespace platform = paddle::platform;

USE_OP(matmul);
31
USE_OP_ITSELF(elementwise_add);
32

33 34 35 36 37
PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(add_grad, GPU, ALL_LAYOUT);
#endif

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// get paddle matmul op results as baseline
template <typename T>
void GetLinearOp(const std::vector<T> &x, const std::vector<T> &y,
                 const framework::DDim &x_dim, const framework::DDim &y_dim,
                 const platform::CUDADeviceContext &ctx, bool transpose_a,
                 bool transpose_b, float alpha, std::vector<T> *out) {
  framework::Scope scope;
  auto var_x = scope.Var("X");
  auto tensor_x = var_x->GetMutable<framework::LoDTensor>();
  auto var_y = scope.Var("Y");
  auto tensor_y = var_y->GetMutable<framework::LoDTensor>();
  auto var_out = scope.Var("Out");
  auto tensor_out = var_out->GetMutable<framework::LoDTensor>();

  tensor_x->Resize(x_dim);
  tensor_y->Resize(y_dim);
  tensor_out->Resize({x_dim[0], x_dim[1], y_dim[0]});

  auto x_ptr = tensor_x->mutable_data<T>(ctx.GetPlace());
  auto y_ptr = tensor_y->mutable_data<T>(ctx.GetPlace());
  auto z_ptr = tensor_out->mutable_data<T>(ctx.GetPlace());
59 60
  auto size_x = static_cast<size_t>(phi::product(x_dim));
  auto size_y = static_cast<size_t>(phi::product(y_dim));
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  auto size_z = x_dim[0] * x_dim[1] * y_dim[0];
  cudaMemcpy(x_ptr, x.data(), size_x * sizeof(T), cudaMemcpyHostToDevice);
  cudaMemcpy(y_ptr, y.data(), size_y * sizeof(T), cudaMemcpyHostToDevice);

  framework::AttributeMap attrs;
  attrs.insert({"transpose_X", transpose_a});
  attrs.insert({"transpose_Y", transpose_b});
  attrs.insert({"alpha", alpha});

  auto op = framework::OpRegistry::CreateOp(
      "matmul", {{"X", {"X"}}, {"Y", {"Y"}}}, {{"Out", {"Out"}}}, attrs);
  op->Run(scope, ctx.GetPlace());

  cudaMemcpy(out->data(), z_ptr, size_z * sizeof(T), cudaMemcpyDeviceToHost);
  ctx.Wait();
}

// get paddle elementwise_add op results as baseline
template <typename T>
void GetElementwiseAddOp(const std::vector<T> &x, const std::vector<T> &y,
                         const int bsz_seq, const int output_size,
                         const platform::CUDADeviceContext &ctx,
                         std::vector<T> *out) {
  framework::Scope scope;
  auto var_x = scope.Var("X");
  auto tensor_x = var_x->GetMutable<framework::LoDTensor>();
  auto var_y = scope.Var("Y");
  auto tensor_y = var_y->GetMutable<framework::LoDTensor>();
  auto var_out = scope.Var("Out");
  auto tensor_out = var_out->GetMutable<framework::LoDTensor>();

  tensor_x->Resize({bsz_seq, output_size});
  tensor_y->Resize({output_size});
  tensor_out->Resize({bsz_seq, output_size});

  auto x_ptr = tensor_x->mutable_data<T>(ctx.GetPlace());
  auto y_ptr = tensor_y->mutable_data<T>(ctx.GetPlace());
  auto z_ptr = tensor_out->mutable_data<T>(ctx.GetPlace());
  auto size_x = bsz_seq * output_size;
  auto size_y = output_size;
  auto size_z = bsz_seq * output_size;
  cudaMemcpy(x_ptr, x.data(), size_x * sizeof(T), cudaMemcpyHostToDevice);
  cudaMemcpy(y_ptr, y.data(), size_y * sizeof(T), cudaMemcpyHostToDevice);

  framework::AttributeMap attrs;
  auto op = framework::OpRegistry::CreateOp("elementwise_add",
                                            {{"X", {"X"}}, {"Y", {"Y"}}},
                                            {{"Out", {"Out"}}}, attrs);
  op->Run(scope, ctx.GetPlace());
  cudaMemcpy(out->data(), z_ptr, size_z * sizeof(T), cudaMemcpyDeviceToHost);
  ctx.Wait();
}

// get paddle matmul_grad op results as baseline
template <typename T>
void GetLinearOpGrad(const std::vector<T> &x_vec, const std::vector<T> &y_vec,
                     const std::vector<T> &dout_vec,
                     const framework::DDim &x_dim, const framework::DDim &y_dim,
                     const framework::DDim &out_dim,
                     const platform::CUDADeviceContext &ctx, bool transpose_a,
                     bool transpose_b, float alpha, std::vector<T> *dinput_vec,
                     std::vector<T> *dweight_vec) {
  framework::Scope scope;
  auto var_x = scope.Var("X");
  auto tensor_x = var_x->GetMutable<framework::LoDTensor>();
  auto var_y = scope.Var("Y");
  auto tensor_y = var_y->GetMutable<framework::LoDTensor>();
  auto var_dout = scope.Var("DOut");
  auto tensor_dout = var_dout->GetMutable<framework::LoDTensor>();
  tensor_x->Resize(x_dim);
  tensor_y->Resize(y_dim);
  tensor_dout->Resize(out_dim);

  auto var_dx = scope.Var("DX");
  auto tensor_dx = var_dx->GetMutable<framework::LoDTensor>();
  auto var_dy = scope.Var("DY");
  auto tensor_dy = var_dy->GetMutable<framework::LoDTensor>();
  tensor_dx->Resize(x_dim);
  tensor_dy->Resize(y_dim);

  auto x_ptr = tensor_x->mutable_data<T>(ctx.GetPlace());
  auto y_ptr = tensor_y->mutable_data<T>(ctx.GetPlace());
  auto dout_ptr = tensor_dout->mutable_data<T>(ctx.GetPlace());
  auto dinput_ptr = tensor_dx->mutable_data<T>(ctx.GetPlace());
  auto dweight_ptr = tensor_dy->mutable_data<T>(ctx.GetPlace());

147 148
  auto size_x = static_cast<size_t>(phi::product(x_dim));
  auto size_y = static_cast<size_t>(phi::product(y_dim));
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  auto size_z = x_dim[0] * x_dim[1] * y_dim[0];
  cudaMemcpy(x_ptr, x_vec.data(), size_x * sizeof(T), cudaMemcpyHostToDevice);
  cudaMemcpy(y_ptr, y_vec.data(), size_y * sizeof(T), cudaMemcpyHostToDevice);
  cudaMemcpy(dout_ptr, dout_vec.data(), size_z * sizeof(T),
             cudaMemcpyHostToDevice);

  bool use_mkldnn = false;
  std::vector<int> fused_reshape_X = {};
  std::vector<int> fused_reshape_Y = {};
  std::vector<int> fused_reshape_Out = {};
  std::vector<int> fused_transpose_X = {};
  std::vector<int> fused_transpose_Y = {};
  std::vector<int> fused_transpose_Out = {};
  bool use_quantizer = false, force_fp32_output = false;
  std::string mkldnn_data_type = "float32";
  float Scale_x = 1.0, Scale_y = 1.0, Scale_out = 1.0;

  framework::AttributeMap attrs;
  attrs.insert({"transpose_X", transpose_a});
  attrs.insert({"transpose_Y", transpose_b});
  attrs.insert({"alpha", alpha});
  attrs.insert({"use_mkldnn", use_mkldnn});
  attrs.insert({"fused_reshape_X", fused_reshape_X});
  attrs.insert({"fused_reshape_Y", fused_reshape_Y});
  attrs.insert({"fused_reshape_Out", fused_reshape_Out});
  attrs.insert({"fused_transpose_X", fused_transpose_X});
  attrs.insert({"fused_transpose_Y", fused_transpose_Y});
  attrs.insert({"fused_transpose_Out", fused_transpose_Out});
  attrs.insert({"use_quantizer", use_quantizer});
  attrs.insert({"mkldnn_data_type", mkldnn_data_type});
  attrs.insert({"Scale_x", Scale_x});
  attrs.insert({"Scale_y", Scale_y});
  attrs.insert({"Scale_out", Scale_out});
  attrs.insert({"force_fp32_output", force_fp32_output});

  auto op = framework::OpRegistry::CreateOp(
      "matmul_grad", {{"Out@GRAD", {"DOut"}}, {"X", {"X"}}, {"Y", {"Y"}}},
      {{"X@GRAD", {"DX"}}, {"Y@GRAD", {"DY"}}}, attrs);
  op->Run(scope, ctx.GetPlace());

  cudaMemcpy(dinput_vec->data(), dinput_ptr, size_x * sizeof(T),
             cudaMemcpyDeviceToHost);
  cudaMemcpy(dweight_vec->data(), dweight_ptr, size_y * sizeof(T),
             cudaMemcpyDeviceToHost);
  ctx.Wait();
}

// get paddle elementwise_add_grad op results as baseline
template <typename T>
void GetElementwiseAddOpGrad(const std::vector<T> &dout_vec, const int bsz_seq,
                             const int output_size,
                             const platform::CUDADeviceContext &ctx,
                             std::vector<T> *dy_vec) {
  framework::Scope scope;
  auto var_x = scope.Var("X");
  auto tensor_x = var_x->GetMutable<framework::LoDTensor>();
  auto var_y = scope.Var("Y");
  auto tensor_y = var_y->GetMutable<framework::LoDTensor>();
  auto var_dout = scope.Var("DOut");
  auto tensor_dout = var_dout->GetMutable<framework::LoDTensor>();
  tensor_x->Resize({bsz_seq, output_size});
  tensor_y->Resize({output_size});
  tensor_dout->Resize({bsz_seq, output_size});

  auto var_dx = scope.Var("DX");
  auto tensor_dx = var_dx->GetMutable<framework::LoDTensor>();
  auto var_dy = scope.Var("DY");
  auto tensor_dy = var_dy->GetMutable<framework::LoDTensor>();
  tensor_dx->Resize({bsz_seq, output_size});
  tensor_dy->Resize({output_size});

  auto dout_ptr = tensor_dout->mutable_data<T>(ctx.GetPlace());
  auto tensor_dy_ptr = tensor_dy->mutable_data<T>(ctx.GetPlace());
  auto size_z = static_cast<size_t>(bsz_seq * output_size);
  cudaMemcpy(dout_ptr, dout_vec.data(), size_z * sizeof(T),
             cudaMemcpyHostToDevice);

  int axis = -1;
  bool use_mkldnn = false, use_quantizer = false;
  std::string mkldnn_data_type = "float32";
  std::string x_data_format = "", y_data_format = "";
  float Scale_x = 1.0, Scale_y = 1.0, Scale_out = 1.0;

  framework::AttributeMap attrs;
  attrs.insert({"axis", axis});
  attrs.insert({"use_mkldnn", use_mkldnn});
  attrs.insert({"x_data_format", x_data_format});
  attrs.insert({"y_data_format", y_data_format});
  attrs.insert({"use_quantizer", use_quantizer});
  attrs.insert({"mkldnn_data_type", mkldnn_data_type});
  attrs.insert({"Scale_x", Scale_x});
  attrs.insert({"Scale_y", Scale_y});
  attrs.insert({"Scale_out", Scale_out});

  auto op = framework::OpRegistry::CreateOp(
      "elementwise_add_grad",
      {{"Out@GRAD", {"DOut"}}, {"X", {"X"}}, {"Y", {"Y"}}},
      {{"X@GRAD", {"DX"}}, {"Y@GRAD", {"DY"}}}, attrs);
  op->Run(scope, ctx.GetPlace());

  auto size_y = static_cast<size_t>(output_size);
  cudaMemcpy(dy_vec->data(), tensor_dy_ptr, size_y * sizeof(T),
             cudaMemcpyDeviceToHost);
  ctx.Wait();
}

template <typename T>
class TestFeedForward {
 public:
  TestFeedForward() {
    batch_size_ = 16;
    seq_len_ = 128;
    num_head_ = 16;
    dim_head_ = 64;
    dim_embed_ = 1024;
    has_bias_ = false;
  }

  TestFeedForward(int batch_size, int seq_len, int num_head, int dim_head,
                  int dim_embed, bool has_bias) {
    batch_size_ = batch_size;
    seq_len_ = seq_len;
    num_head_ = num_head;
    dim_head_ = dim_head;
    dim_embed_ = dim_embed;
    has_bias_ = has_bias;
  }

  ~TestFeedForward() { delete ctx_; }

  void SetUp() {
    bsz_seq_ = batch_size_ * seq_len_;
    output_size_ = 3 * num_head_ * dim_head_;
    input_size_ = dim_embed_;
    ctx_ = new platform::CUDADeviceContext(place_);
W
Wilber 已提交
284 285 286 287 288 289 290 291 292 293 294 295
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(place_, ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(place_)
            .get());
    ctx_->PartialInitWithAllocator();
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    size_src_ = bsz_seq_ * dim_embed_;         // src: [bs, seq_len, em_dim]
    size_weight_ = dim_embed_ * output_size_;  // weight: [output_size, em_dim]
    size_output_ =
        bsz_seq_ * output_size_;  // output: [bs, seq_len, output_size]
    size_bias_ = output_size_;

    base_out_vec_.resize(size_output_);
    base_bias_out_vec_.resize(size_output_);
    base_dinput_vec_.resize(size_src_);
    base_dweight_vec_.resize(size_weight_);
    base_dbias_vec_.resize(size_bias_);

    src_vec_.resize(size_src_);
    weight_vec_.resize(size_weight_);
    bias_vec_.resize(size_bias_);
    doutput_vec_.resize(size_output_);

    std::default_random_engine random(time(NULL));
    std::uniform_real_distribution<float> dis(0.0, 1.0);
    for (int i = 0; i < size_src_; i++) {
      src_vec_[i] = static_cast<T>(dis(random));
    }
    for (int i = 0; i < size_weight_; i++) {
      weight_vec_[i] = static_cast<T>(dis(random));
    }
    for (int i = 0; i < size_bias_; i++) {
      bias_vec_[i] = static_cast<T>(dis(random));
    }
    for (int i = 0; i < size_output_; i++) {
      doutput_vec_[i] = static_cast<T>(dis(random));
    }

    framework::TensorFromVector<T>(src_vec_, *ctx_, &src_);
    src_.Resize({batch_size_, seq_len_, dim_embed_});
    framework::TensorFromVector<T>(weight_vec_, *ctx_, &weight_);
    weight_.Resize({output_size_, dim_embed_});
    out_.Resize({batch_size_, seq_len_, output_size_});
    out_.mutable_data<T>(place_);
    if (has_bias_) {
      framework::TensorFromVector<T>(bias_vec_, *ctx_, &bias_);
      bias_.Resize({output_size_});
      bias_out_.Resize({batch_size_, seq_len_, output_size_});
      bias_out_.mutable_data<T>(place_);
    }
    framework::TensorFromVector<T>(doutput_vec_, *ctx_, &doutput_);
    doutput_.Resize({batch_size_, seq_len_, output_size_});

    dinput_.Resize({batch_size_, seq_len_, dim_embed_});
    dinput_.mutable_data<T>(place_);
    dweight_.Resize({output_size_, dim_embed_});
    dweight_.mutable_data<T>(place_);
    if (has_bias_) {
      dbias_.Resize({output_size_});
      dbias_.mutable_data<T>(place_);
    }
  }

  void BaselineForward() {
    bool transpose_a = false, transpose_b = true;
    float alpha = 1;
    GetLinearOp(src_vec_, weight_vec_, src_.dims(), weight_.dims(), *ctx_,
                transpose_a, transpose_b, alpha, &base_out_vec_);
    if (has_bias_) {
      GetElementwiseAddOp(base_out_vec_, bias_vec_, bsz_seq_, output_size_,
                          *ctx_, &base_bias_out_vec_);
    }
    ctx_->Wait();
  }

  // get forward results of feedforward.
  void FusedForward() {
    T *p_weight = weight_.data<T>();
    T *p_src = src_.data<T>();
    T *p_output = out_.data<T>();

    T *p_bias = nullptr;
    T *p_bias_output = nullptr;
    if (has_bias_) {
      p_bias = bias_.data<T>();
      p_bias_output = bias_out_.data<T>();
    }
    auto qkv_compute = paddle::operators::FeedForward<T>(
        *ctx_, bsz_seq_, output_size_, input_size_, has_bias_);
    qkv_compute.ComputeForward(p_weight, p_src, p_bias, p_output,
                               p_bias_output);
    ctx_->Wait();
  }

  void BaselineBackward() {
    bool transpose_a = false, transpose_b = true;
    float alpha = 1;

    GetLinearOpGrad(src_vec_, weight_vec_, doutput_vec_, src_.dims(),
                    weight_.dims(), out_.dims(), *ctx_, transpose_a,
                    transpose_b, alpha, &base_dinput_vec_, &base_dweight_vec_);
    if (has_bias_) {
      GetElementwiseAddOpGrad(doutput_vec_, bsz_seq_, output_size_, *ctx_,
                              &base_dbias_vec_);
    }
    ctx_->Wait();
  }

  // get backward results of feedforward.
  void FusedBackward() {
    T *p_weight = weight_.data<T>();
    T *p_src = src_.data<T>();
    T *p_doutput = doutput_.data<T>();
    T *p_dinput = dinput_.data<T>();
    T *p_dweight = dweight_.data<T>();

    T *bias_ptr = nullptr;
    if (has_bias_) {
      bias_ptr = dbias_.data<T>();
    }
    auto qkv_compute = paddle::operators::FeedForward<T>(
        *ctx_, bsz_seq_, output_size_, input_size_, has_bias_);
    qkv_compute.ComputeBackward(p_src, p_weight, p_doutput, p_dinput, p_dweight,
                                bias_ptr);
    ctx_->Wait();
  }

  void Run() {
    SetUp();
    BaselineForward();
    FusedForward();
    BaselineBackward();
    FusedBackward();
  }

  // check forward correctness between baseline and results of feedforward.
  void CheckOut(const T diff, bool is_relative_atol = false) {
    std::vector<T> out(size_output_);
    std::vector<T> bias_out(size_output_);
430
    paddle::framework::TensorToVector(out_, *ctx_, &out);
431
    if (has_bias_) {
432
      paddle::framework::TensorToVector(bias_out_, *ctx_, &bias_out);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    }
    ctx_->Wait();

    for (int i = 0; i < size_output_; i++) {
      if (is_relative_atol) {
        EXPECT_LT(std::abs((out[i] - base_out_vec_[i]) / base_out_vec_[i]),
                  diff);
      } else {
        EXPECT_LT(std::abs(out[i] - base_out_vec_[i]), diff);
      }
      if (has_bias_) {
        if (is_relative_atol) {
          EXPECT_LT(std::abs((bias_out[i] - base_bias_out_vec_[i]) /
                             base_bias_out_vec_[i]),
                    diff);
        } else {
          EXPECT_LT(std::abs(bias_out[i] - base_bias_out_vec_[i]), diff);
        }
      }
    }
  }

  // check backward correctness between baseline and results of feedforward.
  void CheckGrad(const T diff, bool is_relative_atol = false) {
    std::vector<T> h_dinput(size_src_);
458
    paddle::framework::TensorToVector(dinput_, *ctx_, &h_dinput);
459 460 461 462 463 464 465 466 467 468
    for (int i = 0; i < size_src_; i++) {
      if (is_relative_atol) {
        EXPECT_LT(
            std::abs((h_dinput[i] - base_dinput_vec_[i]) / base_dinput_vec_[i]),
            diff);
      } else {
        EXPECT_LT(std::abs(h_dinput[i] - base_dinput_vec_[i]), diff);
      }
    }
    std::vector<T> h_dweight(size_weight_);
469
    paddle::framework::TensorToVector(dweight_, *ctx_, &h_dweight);
470 471 472 473 474 475 476 477 478 479 480
    for (int i = 0; i < size_weight_; i++) {
      if (is_relative_atol) {
        EXPECT_LT(std::abs((h_dweight[i] - base_dweight_vec_[i]) /
                           base_dweight_vec_[i]),
                  diff);
      } else {
        EXPECT_LT(std::abs(h_dweight[i] - base_dweight_vec_[i]), diff);
      }
    }
    if (has_bias_) {
      std::vector<T> h_dbias(size_bias_);
481
      paddle::framework::TensorToVector(dbias_, *ctx_, &h_dbias);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
      for (int i = 0; i < size_bias_; i++) {
        if (is_relative_atol) {
          EXPECT_LT(
              std::abs((h_dbias[i] - base_dbias_vec_[i]) / base_dbias_vec_[i]),
              diff);
        } else {
          EXPECT_LT(std::abs(h_dbias[i] - base_dbias_vec_[i]), diff);
        }
      }
    }
  }

 private:
  int batch_size_, seq_len_, num_head_, dim_head_, dim_embed_;
  int bsz_seq_, output_size_, input_size_;
  bool has_bias_;
  int size_src_, size_weight_, size_bias_, size_output_;

  framework::Tensor src_, weight_, bias_, out_, bias_out_;
  framework::Tensor dinput_, dweight_, dbias_, doutput_;
  std::vector<T> src_vec_, weight_vec_, bias_vec_, out_vec_, bias_out_vec_;
  std::vector<T> dinput_vec_, dweight_vec_, dbias_vec_, doutput_vec_;

  // results of baseline.
  std::vector<T> base_out_vec_, base_bias_out_vec_;
  std::vector<T> base_dinput_vec_, base_dweight_vec_, base_dbias_vec_;

  platform::CUDAPlace place_;
  platform::CUDADeviceContext *ctx_;
};

// test for fp32, fp16, fp32+bias and fp16+bias
TEST(FeedForward, GPUFeedforwardBertLargeSizeFp32) {
  int batch_size = 16;
  int seq_len = 128;
  int num_head = 16;
  int dim_head = 64;
  int dim_embed = 1024;
  bool has_bias = false;
  TestFeedForward<float> test(batch_size, seq_len, num_head, dim_head,
                              dim_embed, has_bias);
  test.Run();
  test.CheckOut(static_cast<float>(1e-5));
  test.CheckGrad(static_cast<float>(1e-5));
}

TEST(FeedForward, GPUFeedforwardBertLargeSizeFp16) {
  int batch_size = 16;
  int seq_len = 128;
  int num_head = 16;
  int dim_head = 64;
  int dim_embed = 1024;
  bool has_bias = false;
  TestFeedForward<paddle::platform::float16> test(
      batch_size, seq_len, num_head, dim_head, dim_embed, has_bias);
  test.Run();
  test.CheckOut(static_cast<paddle::platform::float16>(1e-5));
  test.CheckGrad(static_cast<paddle::platform::float16>(1e-5));
}

TEST(FeedForward, GPUFeedforwardBertLargeSizeFp32Bias) {
  int batch_size = 16;
  int seq_len = 128;
  int num_head = 16;
  int dim_head = 64;
  int dim_embed = 1024;
  bool has_bias = true;
  TestFeedForward<float> test(batch_size, seq_len, num_head, dim_head,
                              dim_embed, has_bias);
  test.Run();
  test.CheckOut(static_cast<float>(1e-5));
  test.CheckGrad(static_cast<float>(1e-3));
}

TEST(FeedForward, GPUFeedforwardBertLargeSizeFp16Bias) {
  int batch_size = 16;
  int seq_len = 128;
  int num_head = 16;
  int dim_head = 64;
  int dim_embed = 1024;
  bool has_bias = true;
  TestFeedForward<paddle::platform::float16> test(
      batch_size, seq_len, num_head, dim_head, dim_embed, has_bias);
  test.Run();
  test.CheckOut(static_cast<paddle::platform::float16>(1e-2));
  test.CheckGrad(static_cast<paddle::platform::float16>(1e-2), true);
}