gpu_info.cc 10.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
16
#include <algorithm>
S
sneaxiy 已提交
17 18
#include <cstdlib>
#include <string>
L
liaogang 已提交
19

20
#include "gflags/gflags.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/platform/enforce.h"
22
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
23

24 25 26 27 28
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_string(selected_gpus);
29

Z
zhhsplendid 已提交
30 31
constexpr static float fraction_reserve_gpu_memory = 0.05f;

L
liaogang 已提交
32 33 34
namespace paddle {
namespace platform {

35 36 37 38 39 40
inline std::string CudaErrorWebsite() {
  return "Please see detail in https://docs.nvidia.com/cuda/cuda-runtime-api"
         "/group__CUDART__TYPES.html#group__CUDART__TYPES_1g3f51e3575c217824"
         "6db0a94a430e0038";
}

S
sneaxiy 已提交
41 42 43 44 45 46 47
static int GetCUDADeviceCountImpl() {
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
S
sneaxiy 已提交
48
      VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be empty. No GPU detected.";
S
sneaxiy 已提交
49 50 51 52
      return 0;
    }
  }

L
liaogang 已提交
53
  int count;
54
  auto error_code = cudaGetDeviceCount(&count);
L
liaogang 已提交
55
  PADDLE_ENFORCE(
56 57 58 59
      error_code,
      "cudaGetDeviceCount failed in "
      "paddle::platform::GetCUDADeviceCountImpl, error code : %d, %s",
      error_code, CudaErrorWebsite());
L
liaogang 已提交
60 61 62
  return count;
}

S
sneaxiy 已提交
63 64 65 66 67
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

68 69 70
int GetCUDAComputeCapability(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  cudaDeviceProp device_prop;
71
  auto error_code = cudaGetDeviceProperties(&device_prop, id);
72 73 74 75 76
  PADDLE_ENFORCE(
      error_code,
      "cudaGetDeviceProperties failed in "
      "paddle::platform::GetCUDAComputeCapability, error code : %d, %s",
      error_code, CudaErrorWebsite());
77 78 79
  return device_prop.major * 10 + device_prop.minor;
}

C
chengduo 已提交
80 81 82
int GetCUDARuntimeVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int runtime_version = 0;
83 84
  auto error_code = cudaRuntimeGetVersion(&runtime_version);
  PADDLE_ENFORCE(error_code,
C
chengduo 已提交
85
                 "cudaRuntimeGetVersion failed in "
86 87
                 "paddle::platform::GetCUDARuntimeVersion, error code : %d, %s",
                 error_code, CudaErrorWebsite());
C
chengduo 已提交
88 89 90 91 92 93
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int driver_version = 0;
94 95
  auto error_code = cudaDriverGetVersion(&driver_version);
  PADDLE_ENFORCE(error_code,
C
chengduo 已提交
96
                 "cudaDriverGetVersion failed in "
97 98
                 "paddle::platform::GetCUDADriverVersion, error code : %d, %s",
                 error_code, CudaErrorWebsite());
C
chengduo 已提交
99 100 101
  return driver_version;
}

102 103 104 105 106 107 108 109 110 111
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
112 113 114
int GetCUDAMultiProcessors(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
115 116 117 118 119 120
  auto error_code =
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id);
  PADDLE_ENFORCE(error_code,
                 "cudaDeviceGetAttribute failed in "
                 "paddle::platform::GetCUDAMultiProcess, error code : %d, %s",
                 error_code, CudaErrorWebsite());
C
chengduoZH 已提交
121 122 123 124 125 126
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
127 128 129 130 131 132 133
  auto error_code = cudaDeviceGetAttribute(
      &count, cudaDevAttrMaxThreadsPerMultiProcessor, id);
  PADDLE_ENFORCE(
      error_code,
      "cudaDeviceGetAttribute failed in paddle::"
      "platform::GetCUDAMaxThreadsPerMultiProcessor, error code : %d, %s",
      error_code, CudaErrorWebsite());
C
chengduoZH 已提交
134 135 136
  return count;
}

L
liaogang 已提交
137 138
int GetCurrentDeviceId() {
  int device_id;
139 140 141 142 143
  auto error_code = cudaGetDevice(&device_id);
  PADDLE_ENFORCE(error_code,
                 "cudaGetDevice failed in "
                 "paddle::platform::GetCurrentDeviceId, error code : %d, %s",
                 error_code, CudaErrorWebsite());
L
liaogang 已提交
144 145 146
  return device_id;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
165
void SetDeviceId(int id) {
Q
qijun 已提交
166
  // TODO(qijun): find a better way to cache the cuda device count
Y
Yang Yang 已提交
167
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
168 169 170 171 172
  auto error_code = cudaSetDevice(id);
  PADDLE_ENFORCE(error_code,
                 "cudaSetDevice failed in "
                 "paddle::platform::SetDeviced, error code : %d, %s",
                 error_code, CudaErrorWebsite());
L
liaogang 已提交
173 174
}

175
void GpuMemoryUsage(size_t *available, size_t *total) {
176 177 178 179 180
  auto error_code = cudaMemGetInfo(available, total);
  PADDLE_ENFORCE(error_code,
                 "cudaMemGetInfo failed in "
                 "paddle::platform::GetMemoryUsage, error code : %d, %s",
                 error_code, CudaErrorWebsite());
L
liaogang 已提交
181 182
}

183
size_t GpuAvailableMemToAlloc() {
L
liaogang 已提交
184 185
  size_t total = 0;
  size_t available = 0;
186
  GpuMemoryUsage(&available, &total);
187 188
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
189
  // If available size is less than minimum chunk size, no usable memory exists
190
  size_t available_to_alloc = available - reserving;
191
  size_t min_chunk_size = GpuMinChunkSize();
192 193 194
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
195 196 197
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
Z
zhhsplendid 已提交
198 199
}

200 201 202
size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}
Z
zhhsplendid 已提交
203

204 205 206 207 208 209 210 211 212 213
static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(available_to_alloc, 0, "No enough available GPU memory");
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
214
  PADDLE_ENFORCE_GE(available_to_alloc, alloc_bytes,
215 216 217 218 219
                    "No enough available GPU memory");
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}
Z
zhhsplendid 已提交
220

221
size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }
Z
zhhsplendid 已提交
222

223
size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }
L
liaogang 已提交
224

L
liaogang 已提交
225 226 227 228 229 230
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
231 232 233
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
L
liaogang 已提交
234 235
}

L
liaogang 已提交
236 237
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
238 239
  auto error_code = cudaMemcpyAsync(dst, src, count, kind, stream);
  PADDLE_ENFORCE(error_code,
240
                 "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync "
241 242 243
                 "(%p -> %p, length: %d) error code : %d, %s",
                 src, dst, static_cast<int>(count), error_code,
                 CudaErrorWebsite());
L
liaogang 已提交
244 245
}

246 247
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
248 249 250 251 252 253
  auto error_code = cudaMemcpy(dst, src, count, kind);
  PADDLE_ENFORCE(error_code,
                 "cudaMemcpy failed in paddle::platform::GpuMemcpySync "
                 "(%p -> %p, length: %d) error code : %d, %s",
                 src, dst, static_cast<int>(count), error_code,
                 CudaErrorWebsite());
254 255 256 257
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
258 259
  auto error_code =
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream);
L
liaogang 已提交
260
  PADDLE_ENFORCE(
261 262 263 264
      error_code,
      "cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync "
      "error code : %d, %s",
      error_code, CudaErrorWebsite());
265 266 267 268
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
269 270 271 272 273
  auto error_code = cudaMemcpyPeer(dst, dst_device, src, src_device, count);
  PADDLE_ENFORCE(error_code,
                 "cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync "
                 "error code : %d, %s",
                 error_code, CudaErrorWebsite());
L
liaogang 已提交
274
}
D
dzhwinter 已提交
275 276

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
277 278 279 280 281
  auto error_code = cudaMemsetAsync(dst, value, count, stream);
  PADDLE_ENFORCE(error_code,
                 "cudaMemsetAsync failed in paddle::platform::GpuMemsetAsync "
                 "error code : %d, %s",
                 error_code, CudaErrorWebsite());
D
dzhwinter 已提交
282
}
L
liaogang 已提交
283 284
}  // namespace platform
}  // namespace paddle