context_project.h 12.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
25 26
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
C
chengduoZH 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
C
chengduoZH 已提交
30

C
chengduoZH 已提交
31
/*
C
chengduoZH 已提交
32
 * \brief Context projection concatenates features in adjacent time-steps in
C
chengduoZH 已提交
33 34 35
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
C
sss  
chengduoZH 已提交
36
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
C
chengduoZH 已提交
37
 *
C
chengduoZH 已提交
38
 * \param in            Input data.
C
chengduoZH 已提交
39 40
 * \param Shape         The shape of Input data:
 *                        [mini-batch, input_hidden_size].
C
chengduoZH 已提交
41
 *
C
chengduoZH 已提交
42
 * \param padding_data  Padding data.
C
chengduoZH 已提交
43 44
 * \param Shape         The shape of Padding data:
 *                        [up_pad + down_pad, input_hidden_size].
C
chengduoZH 已提交
45
 *
C
chengduoZH 已提交
46
 * \param col           Col data.
C
chengduoZH 已提交
47 48
 * \param Shape         The shape of Col data:
 *                        [mini-batch, context_length * input_hidden_size].
C
chengduoZH 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
C
chengduoZH 已提交
66 67 68
 *   If context_start is -1 and padding_trainable is false, we use zero to pad
 *   instead of learned weight to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
69
 *
C
chengduoZH 已提交
70 71 72 73
 *   Out =[[0,  0,  a1, a2, b1, b2;
 *          a1, a2, b1, b2, c1, c2;
 *          b1, b2, c1, c2, 0,  0 ]
 *          [0,  0, d1, d2, 0,  0 ]]
C
chengduoZH 已提交
74 75
 *
 * - Case2:
C
chengduoZH 已提交
76 77 78
 *   If context_start is -1 and padding_trainable is true, we use learned weight
 *   to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
79
 *
C
chengduoZH 已提交
80 81 82 83
 *   Out = [[w1, w2, a1, a2, b1, b2;
 *           a1, a2, b1, b2, c1, c2;
 *           b1, b2, c1, c2, w3, w4]
 *          [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
84 85 86 87
 *
 */

template <typename Place, typename T>
C
chengduoZH 已提交
88
class ContextProjectFunctor {
C
chengduoZH 已提交
89
 public:
C
chengduoZH 已提交
90
  void operator()(const platform::DeviceContext& context, const LoDTensor& in,
91 92 93 94
                  const Tensor& padding_data, bool padding_trainable,
                  const int context_start, const int context_length,
                  const int context_stride, const int up_pad,
                  const int down_pad, Tensor* col) {
C
chengduoZH 已提交
95
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
96

C
chengduoZH 已提交
97
    math::Im2ColFunctor<math::ColFormat::kOCF, Place, float> im2col_ocf;
C
sss  
chengduoZH 已提交
98

C
chengduoZH 已提交
99 100 101
    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});
C
chengduoZH 已提交
102

C
sss  
chengduoZH 已提交
103 104 105 106 107 108 109 110 111 112
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

113 114
      Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
115 116 117 118

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
119
        Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
sss  
chengduoZH 已提交
120 121 122 123 124 125 126 127 128 129 130

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));
C
chengduoZH 已提交
131
        im2col_ocf(context, in_t, dilation, stride, padding, &out_t);
C
sss  
chengduoZH 已提交
132 133 134 135 136
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
137 138
        Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                  static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({sequence_height * context_length, sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
152 153 154
            Tensor out_t_sub = out_t.Slice(k * context_length,
                                           k * context_length + padding_size);
            Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
sss  
chengduoZH 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
181 182

            Tensor out_t_sub = out_t.Slice(
C
sss  
chengduoZH 已提交
183 184
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
185
            Tensor w_sub = padding_data.Slice(
C
sss  
chengduoZH 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
  }
};

template <typename Place, typename T>
class ContextProjectGradFunctor {
 public:
201 202 203 204 205
  void operator()(const platform::DeviceContext& context, const LoDTensor& in,
                  bool padding_trainable, const int context_start,
                  const int context_length, const int context_stride,
                  const int up_pad, const int down_pad, bool pad_grad,
                  bool input_grad, Tensor* padding_data, Tensor* col) {
C
sss  
chengduoZH 已提交
206 207
    auto lod_level_0 = in.lod()[0];

C
chengduoZH 已提交
208
    math::Col2ImFunctor<math::ColFormat::kOCF, Place, float> col2im_ocf;
C
chengduoZH 已提交
209

C
chengduoZH 已提交
210 211 212
    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});
C
chengduoZH 已提交
213

C
chengduoZH 已提交
214 215
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
216 217
    sequence_width = in.dims()[1];

C
sss  
chengduoZH 已提交
218
    if (input_grad) {
C
chengduoZH 已提交
219 220 221 222 223 224
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

225 226
        Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                  static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
227 228 229 230

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
231
          Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
chengduoZH 已提交
232 233 234 235 236 237 238 239 240 241 242 243

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
244
          col2im_ocf(context, out_t, dilation, stride, padding, &in_t);
C
chengduoZH 已提交
245
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
246
        }
C
chengduoZH 已提交
247
      }
C
chengduoZH 已提交
248
    }
C
sss  
chengduoZH 已提交
249
    if (pad_grad) {
C
chengduoZH 已提交
250
      if (padding_trainable) {
C
chengduoZH 已提交
251
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
252 253
          Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                    static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
254 255

          sequence_height = static_cast<int>(out_t.dims()[0]);
C
chengduoZH 已提交
256
          out_t.Resize({sequence_height * context_length, sequence_width});
C
chengduoZH 已提交
257

C
sss  
chengduoZH 已提交
258
          if (up_pad > 0) {
C
chengduoZH 已提交
259 260 261 262 263 264
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
265 266
              Tensor out_t_sub = out_t.Slice(k * context_length,
                                             k * context_length + padding_size);
267
              Tensor w_sub = padding_data->Slice(k, k + padding_size);
C
chengduoZH 已提交
268 269
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
270 271
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
272
            }
C
chengduoZH 已提交
273
          }
C
sss  
chengduoZH 已提交
274
          if (down_pad > 0) {
C
chengduoZH 已提交
275 276 277 278 279 280 281 282 283
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
284
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
285 286 287 288 289 290 291 292 293 294 295
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
C
chengduoZH 已提交
296 297

              Tensor out_t_sub = out_t.Slice(
C
chengduoZH 已提交
298 299
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
300
              Tensor w_sub = padding_data->Slice(
C
chengduoZH 已提交
301 302 303
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
304 305
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
306 307
            }
          }
C
chengduoZH 已提交
308
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
309 310 311 312 313 314 315 316 317
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle