analysis_predictor.cc 83.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

W
Wilber 已提交
27
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
30
#include "paddle/fluid/framework/generator.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
36
#include "paddle/fluid/framework/var_type_traits.h"
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/inference/analysis/helper.h"
39
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
40
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
41
#include "paddle/fluid/inference/api/helper.h"
42
#include "paddle/fluid/inference/api/infer_context.h"
43
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
44
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
45
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
46
#include "paddle/fluid/inference/api/resource_manager.h"
47
#include "paddle/fluid/inference/utils/io_utils.h"
48
#include "paddle/fluid/inference/utils/model_utils.h"
49
#include "paddle/fluid/inference/utils/singleton.h"
50
#include "paddle/fluid/memory/memcpy.h"
51
#include "paddle/fluid/platform/cpu_helper.h"
52
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
53
#include "paddle/fluid/platform/device_context.h"
54
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
55
#include "paddle/fluid/platform/profiler.h"
56
#include "paddle/phi/api/ext/op_meta_info.h"
57 58
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
59
#include "paddle/phi/common/place.h"
W
Wilber 已提交
60
#include "paddle/phi/core/enforce.h"
61 62
#include "paddle/utils/string/split.h"

63
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
64 65 66 67
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
68

69 70 71 72
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

73 74 75 76
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

77 78 79 80
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

Y
Yan Chunwei 已提交
81 82
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
83
#include "paddle/fluid/inference/tensorrt/helper.h"
84
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
85 86
#endif

87 88 89 90
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

91 92
namespace paddle {

N
nhzlx 已提交
93
using inference::Singleton;
N
nhzlx 已提交
94
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
95 96
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
97
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
98
#endif
99

100 101
int AnalysisPredictor::clone_num_ = 1;

102 103 104 105
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
106 107
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
108 109 110 111
    return true;
  }
  return false;
}
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

phi::Backend ConvertBackend(AnalysisConfig::Backend backend) {
  switch (backend) {
    case AnalysisConfig::Backend::kGPU:
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
    case AnalysisConfig::Backend::kNPU:
      return phi::Backend::NPU;
    case AnalysisConfig::Backend::kXPU:
      return phi::Backend::XPU;
    case AnalysisConfig::Backend::kCPU:
      return phi::Backend::CPU;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
149 150
}  // namespace

C
ccrrong 已提交
151 152
bool PaddleTensorToLoDTensor(const PaddleTensor &pt,
                             framework::LoDTensor *t,
153
                             const platform::Place &place) {
154
  framework::DDim ddim = phi::make_ddim(pt.shape);
155 156 157 158 159 160 161
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
162 163
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
C
ccrrong 已提交
180 181
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
182 183
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
184 185
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
186 187 188 189
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
190
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
191 192
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
193 194
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
195
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
196 197 198
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
199
    auto dst_gpu_place = place;
C
ccrrong 已提交
200 201 202 203 204
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
205 206 207 208 209
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
210 211
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
212
    auto dst_xpu_place = place;
C
ccrrong 已提交
213 214 215 216 217
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
218 219 220 221 222 223 224
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
225 226 227 228 229 230 231 232 233 234
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
235
bool AnalysisPredictor::Init(
236 237
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
238
  VLOG(3) << "Predictor::init()";
239 240
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
241 242
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
243
    platform::EnableProfiler(tracking_device);
244
  } else {
245 246
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
247 248
  }

249
  // no matter with or without MKLDNN
L
luotao1 已提交
250
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
251

252 253 254
  if (!PrepareScope(parent_scope)) {
    return false;
  }
255 256 257

  InitPlace();

258 259 260 261 262 263 264
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

265 266 267
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

268 269 270
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
271
  }
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
        static_cast<platform::CUDADeviceContext *>(
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
293
  }
294
#endif
295 296
  return true;
}
297

298
void AnalysisPredictor::InitPlace() {
299
  if (config_.use_gpu()) {
C
ccrrong 已提交
300 301
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
302 303
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
304
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
305
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
306
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
307 308
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
309 310
    }
#endif
311
  } else if (config_.use_xpu()) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
335 336 337 338 339 340 341 342
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
359 360 361 362 363 364 365
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
366 367 368 369 370 371 372 373 374
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
375
#endif
376 377 378
  } else {
    place_ = paddle::platform::CPUPlace();
  }
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
          auto *gpu_context = new InferGPUContext();
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
          gpu_context->SetGenerator(
              framework::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(framework::DefaultCPUGenerator().get());

          gpu_context->SetStream(gpu_resource->GetStream());
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandle());
          gpu_context->SetBlasTensorCoreHandle(
              gpu_resource->GetBlasTensorCoreHandle());
          gpu_context->SetBlasTF32Handle(gpu_resource->GetBlasTF32Handle());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandle());
          gpu_context->SetSolverHandle(gpu_resource->GetSolverDnHandle());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandle());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDevice());
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  } else {
    return nullptr;
  }
  return nullptr;
#else
  // TODO(inference): Support other backends.
  return nullptr;
#endif
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
    paddle::framework::InitDevices();
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
520 521
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
522 523 524 525 526 527 528 529 530 531 532 533 534
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
  }

  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}

bool AnalysisPredictor::CreateExecutor() {
535 536 537
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
557 558
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
559 560 561 562 563 564 565 566 567
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
568 569
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
570 571
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
572 573 574
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
575 576 577
  }
}

578
bool AnalysisPredictor::PrepareExecutor() {
579
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
580 581 582 583 584
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
585 586
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
587 588
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
589

590 591 592
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
593

594 595 596
  return true;
}

597
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
634 635 636 637 638 639 640
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
677 678 679 680 681 682
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
683 684 685 686 687 688 689 690 691 692 693
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
694 695 696 697 698
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
755 756
      static_cast<bool>(fin.is_open()),
      true,
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

829 830
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
831 832 833 834 835 836 837 838 839 840 841 842
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
843
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
844 845 846
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
847 848 849
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
850 851
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
852 853 854
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
855 856 857
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
858
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
859
  }
860 861 862
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

863 864 865 866 867 868
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
869 870 871 872
  if (config_.mkldnn_cache_capacity_ > 0 &&
      static_cast<platform::MKLDNNDeviceContext *>(
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
873 874 875 876 877 878 879 880
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
881 882 883
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
884 885 886 887
  }
#endif
}

888 889 890
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
891
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
892 893 894
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
895
  VLOG(3) << "Predictor::predict";
896 897 898 899
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
900 901 902
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
903 904
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
905
    return false;
906
  }
M
Michal Gallus 已提交
907

908 909 910
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
911

912 913 914 915
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
916
  }
Y
Yan Chunwei 已提交
917

M
minqiyang 已提交
918
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
919

Y
Yan Chunwei 已提交
920 921 922 923 924
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
925 926 927
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
928
  tensor_array_batch_cleaner_.ResetNoTensorVars();
929 930 931 932

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
933 934
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
935
#endif
936
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
937 938 939 940
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
941
#endif
942 943
  return true;
}
944

945 946
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
947
  VLOG(3) << "Predictor::set_feed";
948 949 950 951 952 953 954 955 956 957
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
958 959
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
960 961 962
      return false;
    }
    int idx = -1;
963
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
964 965
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
966 967
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
968 969
      }
      idx = feed_names_[name];
970
    } else {
R
Ruibiao Chen 已提交
971
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
972
    }
973
    framework::SetFeedVariable(scope, *input, "feed", idx);
974 975 976 977 978 979 980 981
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
982
  auto shape = phi::vectorize(fetch.dims());
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1000
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1001 1002
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1003
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1004
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1005 1006
        static_cast<size_t>(idx),
        i,
1007
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1008 1009
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1010
            i));
1011
    framework::FetchType &fetch_var =
1012
        framework::GetFetchVariable(*scope, "fetch", idx);
R
Ruibiao Chen 已提交
1013
    auto &fetch = PADDLE_GET(framework::LoDTensor, fetch_var);
1014
    auto type = framework::TransToProtoVarType(fetch.dtype());
1015
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1016
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1017
    if (type == framework::proto::VarType::FP32) {
1018 1019
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1020
    } else if (type == framework::proto::VarType::INT64) {
1021 1022
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1023 1024 1025
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1026 1027 1028
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1029
    } else {
1030 1031
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1032 1033
    }
  }
Y
Yan Chunwei 已提交
1034 1035
  return true;
}
1036

1037
void AnalysisPredictor::PrepareArgument() {
1038
  argument_.SetUseGPU(config_.use_gpu());
1039
  argument_.SetUseFcPadding(config_.use_fc_padding());
1040
  argument_.SetGPUDeviceId(config_.gpu_device_id());
1041
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
1042
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
1043
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1044
  // Analyze inference_program
1045
  argument_.SetPredictorID(predictor_id_);
1046
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
1047 1048
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1049
  } else {
C
ccrrong 已提交
1050 1051
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1052 1053
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1054
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
1055

1056 1057
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1058
  }
1059

1060
  argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
1061
  argument_.SetTensorRtUseOSS(config_.trt_use_varseqlen_);
1062
  argument_.SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
1063 1064
  argument_.SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_.SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
1065 1066 1067 1068 1069
  argument_.SetMinInputShape(config_.min_input_shape_);
  argument_.SetMaxInputShape(config_.max_input_shape_);
  argument_.SetOptimInputShape(config_.optim_input_shape_);
  argument_.SetTensorRtTunedDynamicShape(
      config_.tuned_tensorrt_dynamic_shape());
1070
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1071
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1072 1073 1074
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
1075
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
1076
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
1077 1078
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
1079
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
1080
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
1081
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
1082 1083 1084
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
1085
    argument_.SetTensorRtUseInspector(config_.trt_use_inspector_);
W
Wojciech Uss 已提交
1086
  }
1087

D
denglin-github 已提交
1088 1089 1090 1091 1092 1093
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
1094
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
1095 1096
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
1097 1098 1099
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
1100 1101 1102
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
1103 1104 1105 1106 1107
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
1108
    argument_.SetXpuDeviceId(config_.xpu_device_id_);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    // NNAdapter related
    argument_.SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_.SetNNAdapterDeviceNames(
        config_.NNAdapter().nnadapter_device_names);
    argument_.SetNNAdapterContextProperties(
        config_.NNAdapter().nnadapter_context_properties);
    argument_.SetNNAdapterModelCacheDir(
        config_.NNAdapter().nnadapter_model_cache_dir);
    argument_.SetNNAdapterSubgraphPartitionConfigBuffer(
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
    argument_.SetNNAdapterSubgraphPartitionConfigPath(
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
    argument_.SetNNAdapterModelCacheToken(buffer_keys);
    argument_.SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1129 1130 1131
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1132
#ifdef PADDLE_WITH_IPU
J
jianghaicheng 已提交
1133 1134
  argument_.SetUseIpu(config_.use_ipu_);
  argument_.SetIpuDeviceNum(config_.ipu_device_num());
1135
  argument_.SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
J
jianghaicheng 已提交
1136 1137
  argument_.SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_.SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
1138 1139 1140 1141 1142 1143
  argument_.SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_.SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_.SetIpuAvailableMemoryProportion(
      config_.ipu_available_memory_proportion_);
  argument_.SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
#endif
J
jianghaicheng 已提交
1144

1145 1146 1147
  argument_.SetUseNpu(config_.use_npu_);
  argument_.SetNPUDeviceId(config_.npu_device_id());

1148
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1149
    LOG(INFO) << "MKLDNN is enabled";
1150 1151 1152
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

1153 1154 1155 1156 1157 1158 1159 1160
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1161 1162 1163 1164
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
B
baoachun 已提交
1165 1166 1167 1168 1169 1170 1171

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
    argument_.SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_.SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_.SetQuantVarScales({});
  }
1172 1173
#endif

1174
  auto passes = config_.pass_builder()->AllPasses();
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
              << ", we will use a new PassStrategy. Note that only the GPU "
                 "backend is supported for now.";
    passes.clear();
    if (config_.tensorrt_engine_enabled()) {
      for (const auto &pass : kTrtLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    } else if (config_.use_gpu()) {
      for (const auto &pass : kGpuLowerPrecisionPasses) {
        passes.push_back(pass);
      }
    }

    const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses();
    for (const auto &it : deleted_passes) {
      auto iterator = std::find(passes.begin(), passes.end(), it);
      if (iterator != passes.end()) {
        passes.erase(iterator);
      }
    }

    if (config_.ir_debug_) {
      auto it = std::begin(passes);
      while (it != std::end(passes)) {
        if (*it != "graph_viz_pass") {
          it = passes.insert(it + 1, "graph_viz_pass");
        } else {
          ++it;
        }
      }
    }
  }
Y
Yan Chunwei 已提交
1209 1210 1211 1212
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
1213
  argument_.SetDisableLogs(config_.glog_info_disabled());
1214
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
1215
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
1216
  argument_.SetScopeNotOwned(scope_.get());
1217

1218
  // mixed precison.
1219
  argument_.SetModelPrecision(static_cast<int>(model_precision_));
1220
  argument_.SetMixedBlackList(config_.mixed_black_list_);
1221 1222 1223 1224 1225
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1226 1227
  Analyzer().Run(&argument_);

1228
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1229 1230
      argument_.scope_valid(),
      true,
1231
      platform::errors::InvalidArgument("The argument scope should be valid."));
1232 1233
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
1234
  inference_program_.reset(
1235 1236 1237 1238 1239
      new framework::ProgramDesc(argument_.ir_analyzed_program()),
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
#if PADDLE_WITH_TENSORRT
W
Wilber 已提交
1240 1241 1242 1243
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1244
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1245
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1246
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1258 1259 1260
#endif
        delete prog;
      });
1261 1262 1263 1264
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
1265
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1266
}
1267 1268

template <>
1269 1270 1271
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1272 1273
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
1274 1275 1276 1277
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
1278
  VLOG(3) << "create AnalysisConfig";
1279
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1280 1281
      config.is_valid(),
      true,
1282 1283
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1284

1285 1286 1287 1288
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1289
                 []() { inference::RegisterAllCustomOperator(); });
1290

1291
  if (config.use_gpu()) {
1292 1293 1294 1295 1296 1297
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1298 1299
          config.memory_pool_init_size_mb(),
          0.f,
1300 1301 1302
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
C
ccrrong 已提交
1303 1304
          config.gpu_device_id(),
          0,
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
1318

1319 1320 1321 1322 1323 1324 1325
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
      }

1326 1327 1328 1329 1330 1331 1332 1333 1334
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
1350 1351 1352 1353 1354 1355
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
1356 1357 1358 1359
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1360 1361
  // Each config can only be used for one predictor.
  config.SetInValid();
1362 1363
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1364 1365 1366 1367
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1368 1369 1370 1371 1372
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1373 1374
    return nullptr;
  }
1375

G
Gabor Buella 已提交
1376
  return predictor;
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1391
void AnalysisPredictor::PrepareFeedFetch() {
1392 1393 1394
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1395
  CreateFeedFetchVar(sub_scope_);
1396 1397
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
R
Ruibiao Chen 已提交
1398
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1399 1400 1401 1402 1403
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1404
      idx2feeds_[idx] = op->Output("Out")[0];
1405
    } else if (op->Type() == "fetch") {
R
Ruibiao Chen 已提交
1406
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1407 1408
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1409
      }
Y
Yan Chunwei 已提交
1410
      fetches_[idx] = op;
N
nhzlx 已提交
1411
      idx2fetches_[idx] = op->Input("X")[0];
1412 1413 1414 1415
    }
  }
}

1416
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1417 1418 1419
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1420
  auto *var = scope->Var("feed");
1421
  var->GetMutable<framework::FeedList>();
1422
  var = scope->Var("fetch");
1423
  var->GetMutable<framework::FetchList>();
1424 1425
}

N
nhzlx 已提交
1426 1427 1428 1429 1430 1431 1432 1433
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1434 1435 1436 1437 1438 1439
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1440 1441 1442
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1443 1444 1445 1446 1447
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
1448 1449 1450 1451 1452 1453 1454 1455
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1456 1457
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1458
  framework::Scope *scope;
1459
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1460 1461 1462 1463 1464 1465 1466 1467
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1468
  PADDLE_ENFORCE_NOT_NULL(
1469
      scope->FindVar(name),
1470
      platform::errors::PreconditionNotMet(
1471
          "The variable named %s is not found in the scope of the executor.",
1472
          name));
1473 1474
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1475 1476
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1477 1478
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1479 1480 1481 1482
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1483
  } else if (platform::is_xpu_place(place_)) {
1484 1485 1486 1487 1488 1489 1490 1491
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1492
      auto xpu_place = place_;
1493 1494
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1495
  } else if (platform::is_npu_place(place_)) {
1496
    auto npu_place = place_;
W
Wilber 已提交
1497
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1498 1499 1500 1501 1502 1503
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1504
  } else {
1505
    auto gpu_place = place_;
N
nhzlx 已提交
1506 1507
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1508 1509 1510 1511 1512
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1513
  framework::Scope *scope;
1514
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1515 1516 1517 1518 1519 1520 1521 1522
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
    scope = executor_->scope();
  }
#else
  scope = executor_->scope();
#endif
1523
  PADDLE_ENFORCE_NOT_NULL(
1524
      scope->FindVar(name),
1525
      platform::errors::PreconditionNotMet(
1526
          "The variable named %s is not found in the scope of the executor.",
1527
          name));
1528 1529
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1530 1531
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1532 1533
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1534 1535 1536 1537
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1538
  } else if (platform::is_xpu_place(place_)) {
1539 1540 1541 1542 1543 1544 1545 1546
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1547
      auto xpu_place = place_;
1548 1549
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1550
  } else if (platform::is_npu_place(place_)) {
1551
    auto npu_place = place_;
W
Wilber 已提交
1552
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1553 1554 1555 1556 1557 1558
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
        phi::GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
    res->SetPlace(paddleplace, custom_place.GetDeviceId());
N
nhzlx 已提交
1559
  } else {
1560
    auto gpu_place = place_;
N
nhzlx 已提交
1561 1562
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1563 1564 1565 1566
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1567
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1578 1579 1580
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1581
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1593
  executor_->Run();
1594 1595 1596 1597 1598

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1599
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1600
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1601
  tensor_array_batch_cleaner_.ResetTensorArray();
1602 1603 1604 1605

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1606 1607 1608
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
1609 1610 1611
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
1612
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1613 1614 1615 1616 1617
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
1618 1619 1620
  return true;
}

W
Wilber 已提交
1621 1622
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
1648 1649 1650 1651
  return ZeroCopyRun();
}
#endif

1652 1653 1654 1655 1656 1657
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
1658
    auto gpu_place = place_;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
    framework::DDim dim = var->Get<framework::LoDTensor>().dims();
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
  for (auto it : shape_info_) {
    auto name = it.first;
    auto shapes = it.second;

    std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

    auto ShapeMaxFreq = [](const std::map<int32_t, int32_t> &m) -> int32_t {
      std::vector<std::pair<int32_t, int32_t>> counter;
      for (auto &it : m) counter.push_back(it);
      std::sort(
C
ccrrong 已提交
1698 1699
          counter.begin(),
          counter.end(),
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
          [](std::pair<int32_t, int32_t> &a, std::pair<int32_t, int32_t> &b) {
            return a.second > b.second;
          });
      return counter[0].first;
    };

    for (size_t d = 0; d < shapes[0].size(); ++d) {
      std::map<int32_t, int32_t> counter;
      for (size_t i = 0; i < shapes.size(); ++i) {
        counter[shapes[i][d]] += 1;
        if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
        if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
      }
      opt_shape[d] = ShapeMaxFreq(counter);
    }

    min_shapes[name] = min_shape;
    max_shapes[name] = max_shape;
    opt_shapes[name] = opt_shape;
  }

C
ccrrong 已提交
1721 1722
  inference::SerializeShapeRangeInfo(
      config_.shape_range_info_path(), min_shapes, max_shapes, opt_shapes);
1723 1724
}

1725 1726
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1727
  std::string filename;
1728 1729
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
1730
  } else if (!config_.prog_file().empty()) {
1731 1732 1733
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1734
    filename = config_.prog_file();
1735
  } else {
1736
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1737 1738 1739 1740
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1741
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
1742 1743
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
1744
        config_.params_file());
1745 1746
    return false;
  }
1747 1748 1749

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1750
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1751 1752 1753
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1754
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1755 1756
        static_cast<bool>(fin.is_open()),
        true,
1757 1758 1759
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1760 1761 1762 1763 1764 1765 1766 1767
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1768
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1769
  }
1770 1771 1772 1773 1774 1775
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1776 1777
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1799
      if (!config_.params_file().empty()) {
1800 1801 1802 1803 1804 1805
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1806
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1807 1808 1809 1810 1811
        op->CheckAttrs();
      }
    }
  }

1812
  if (!config_.params_file().empty()) {
1813 1814 1815 1816 1817 1818
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1819
    op->SetAttr("file_path", {config_.params_file()});
1820 1821 1822 1823
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1824
  framework::NaiveExecutor e(place_);
1825 1826 1827 1828
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1829 1830
  return true;
}
1831

1832 1833 1834 1835 1836
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1856
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1857
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
1858 1859
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
1860 1861
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1862 1863 1864
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
1865
      std::string engine_name = PADDLE_GET_CONST(
1866
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1867
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1868 1869 1870 1871
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1872 1873
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1874
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1875
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1876 1877
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1878 1879 1880
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1881

N
nhzlx 已提交
1882
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1883 1884 1885
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1886

N
nhzlx 已提交
1887 1888 1889 1890 1891
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1892
      std::string calibration_table_data_path =
N
nhzlx 已提交
1893 1894 1895 1896
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1897 1898 1899 1900 1901

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1902 1903 1904 1905
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1906
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1907 1908
  return true;
}
N
nhzlx 已提交
1909
#endif
N
nhzlx 已提交
1910

1911
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1912
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1913
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1914 1915
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1916 1917
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1918
#endif
1919
  if (config_.with_profile_) {
1920 1921 1922 1923 1924 1925
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1926

1927 1928 1929 1930 1931 1932
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1933

1934 1935 1936
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
1937 1938 1939 1940 1941
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
1942 1943 1944
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
1945
  device_contexts_.clear();
1946 1947
}

1948
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
Y
Yan Chunwei 已提交
1949
  std::lock_guard<std::mutex> lk(clone_mutex_);
1950
  auto *x = new AnalysisPredictor(config_);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
  x->status_is_cloned_ = true;
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
1962
  x->Init(scope_, inference_program_);
1963
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
1964 1965 1966
  return std::unique_ptr<PaddlePredictor>(x);
}

1967
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1968 1969 1970
  return inference_program_->Proto()->SerializeAsString();
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
2010
template <>
2011 2012
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2013
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2014 2015
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2016 2017
}

2018
}  // namespace paddle
2019 2020 2021

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2022 2023 2024 2025
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
USE_TRT_CONVERTER(elementwise_pow_weight);
2026 2027 2028 2029 2030 2031 2032
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
2033
USE_TRT_CONVERTER(transpose);
2034
USE_TRT_CONVERTER(transpose2);
2035
USE_TRT_CONVERTER(flatten);
2036
USE_TRT_CONVERTER(flatten_contiguous_range);
2037
USE_TRT_CONVERTER(matmul);
2038 2039
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Z
zhupengyang 已提交
2040 2041
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
2042 2043 2044 2045 2046 2047 2048 2049 2050
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2051 2052
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2053
USE_TRT_CONVERTER(split);
2054 2055
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2056
USE_TRT_CONVERTER(leaky_relu);
2057 2058
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
2059
USE_TRT_CONVERTER(group_norm);
2060
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2061 2062 2063
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2064 2065
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
2066
USE_TRT_CONVERTER(slice);
2067
USE_TRT_CONVERTER(scale);
2068
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2069
USE_TRT_CONVERTER(clip);
2070
USE_TRT_CONVERTER(gather);
2071
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2072
USE_TRT_CONVERTER(yolo_box);
2073
USE_TRT_CONVERTER(yolo_box_head);
2074
USE_TRT_CONVERTER(arg_max);
2075
USE_TRT_CONVERTER(roi_align);
2076
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2077
USE_TRT_CONVERTER(multiclass_nms);
2078
USE_TRT_CONVERTER(multiclass_nms3);
2079
USE_TRT_CONVERTER(nearest_interp);
2080
USE_TRT_CONVERTER(nearest_interp_v2);
2081
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2082
USE_TRT_CONVERTER(reshape);
2083
USE_TRT_CONVERTER(reshape2);
2084 2085
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2086
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
2087
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2088 2089
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2090
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2091
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2092
USE_TRT_CONVERTER(pool3d)
2093 2094
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
2095 2096
USE_TRT_CONVERTER(preln_residual_bias)
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2097
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2098
USE_TRT_CONVERTER(strided_slice)
2099
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2100
USE_TRT_CONVERTER(cast)
2101 2102
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2103
USE_TRT_CONVERTER(equal);
2104 2105
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2106 2107
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2108 2109
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2110
USE_TRT_CONVERTER(fill_constant)
2111
USE_TRT_CONVERTER(fused_token_prune)
2112 2113 2114 2115
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2116
#endif
W
Wilber 已提交
2117 2118 2119 2120 2121 2122

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2133 2134 2135 2136
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2137 2138 2139 2140 2141 2142 2143 2144 2145
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2146 2147 2148 2149
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2150 2151 2152 2153 2154 2155 2156
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2157
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2158 2159 2160 2161 2162 2163 2164
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2165
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2166 2167 2168 2169
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2170 2171
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2172 2173 2174 2175 2176 2177 2178 2179
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2180 2181
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2182 2183
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2218 2219 2220 2221
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
                             BackendType backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2253 2254
      size,
      1UL,
W
Wilber 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2273 2274
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2275
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2276 2277
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2278 2279 2280 2281 2282 2283 2284
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2305

2306 2307 2308 2309 2310 2311
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
  auto *dev_ctx = reinterpret_cast<paddle::platform::CUDADeviceContext *>(
      pool.Get(pred->place_));
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2343
}  // namespace experimental
W
Wilber 已提交
2344
}  // namespace paddle_infer