layer.h 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
X
polish  
Xin Pan 已提交
47 48 49 50 51 52 53
             platform::DeviceContext* dev_ctx,
             std::vector<framework::KernelConfig>* kernel_configs)
      : op(op),
        ctx(ctx),
        func(func),
        dev_ctx(dev_ctx),
        kernel_configs(kernel_configs) {}
X
Xin Pan 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

72 73 74
    auto expected_kernel_key =
        op.GetExpectedKernelType(framework::ExecutionContext(
            op, framework::Scope(), *dev_ctx, ctx, nullptr));
X
Xin Pan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
X
polish  
Xin Pan 已提交
92 93 94
    std::vector<framework::KernelConfig>* kernel_configs =
        op.GetKernelConfig(expected_kernel_key);
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
X
Xin Pan 已提交
95 96
  }

M
minqiyang 已提交
97 98
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
99 100 101 102
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
X
polish  
Xin Pan 已提交
103
  std::vector<framework::KernelConfig>* kernel_configs;
X
Xin Pan 已提交
104
};
X
polish  
Xin Pan 已提交
105

106 107
class OpBase;

M
minqiyang 已提交
108 109 110 111 112
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
113 114
class VarBase {
 public:
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  // Internal interface, create VarBase from exist variable
  VarBase(const std::string& name, framework::Variable* var, VarBase* grad,
          bool stop_gradient)
      : VarBase(name, var->Get<framework::LoDTensor>().type(),
                var->Get<framework::LoDTensor>().dims(),
                var->Get<framework::LoDTensor>().place(), var, grad,
                stop_gradient, false) {}

  // Python interface
  VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
          const std::vector<int64_t>& shape, const platform::Place& place,
          bool stop_gradient, bool persistable)
      : VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient,
                persistable) {}

  // Internal interface, create VarBase from with ddim
  VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
          const framework::DDim& shape, const platform::Place& place,
          bool stop_gradient, bool persistable)
      : VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient,
                persistable) {}
M
minqiyang 已提交
136 137

 private:
138 139 140 141 142 143 144
  VarBase(const std::string& name, framework::proto::VarType::Type dtype,
          const framework::DDim& shape, const platform::Place& place,
          framework::Variable* var, VarBase* grad, bool stop_gradient,
          bool persistable)
      : name_(name),
        dtype_(dtype),
        place_(place),
X
polish  
Xin Pan 已提交
145 146
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
147
        stop_gradient_(stop_gradient),
148
        persistable_(persistable),
X
Xin Pan 已提交
149
        pre_op_(nullptr),
150
        pre_op_out_name_(),
151 152 153 154 155 156 157 158
        pre_op_out_idx_(-1) {
    if (!var_) {
      var_ = new framework::Variable();
      auto tensor = var_->GetMutable<framework::LoDTensor>();
      tensor->Resize(shape);
      tensor->mutable_data(place_, dtype_);
    }
  }
159

M
minqiyang 已提交
160
 public:
M
minqiyang 已提交
161 162 163
  virtual ~VarBase() {
    if (var_) {
      delete var_;
164
      var_ = nullptr;
M
minqiyang 已提交
165 166 167 168
    }

    if (grads_) {
      delete grads_;
169
      grads_ = nullptr;
M
minqiyang 已提交
170
    }
171 172 173

    pre_op_ = nullptr;
    pre_op_out_idx_ = -1;
M
minqiyang 已提交
174
  }
175

176 177 178 179 180 181 182 183 184 185 186 187
  inline void SetName(const std::string& name) { name_ = name; }
  inline std::string Name() const { return name_; }

  inline std::vector<int64_t> Shape() const {
    if (var_->IsInitialized()) {
      return framework::vectorize(var_->Get<framework::LoDTensor>().dims());
    } else {
      return {};
    }
  }

  inline framework::proto::VarType::Type DType() const { return dtype_; }
X
Xin Pan 已提交
188

M
minqiyang 已提交
189 190 191 192
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
X
Xin Pan 已提交
193

194 195 196 197 198 199
  inline void SetPersistable(bool persistable) { persistable_ = persistable; }
  inline bool IsPersistable() const { return persistable_; }

  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }

X
Xin Pan 已提交
200
  void RunBackward();
201

202 203 204 205 206 207 208 209
  inline void ResetPreOp(OpBase* op) {
    if (op == pre_op_) {
      // clear pre_op info when op equals to var's pre_op
      pre_op_ = nullptr;
      pre_op_out_idx_ = -1;
    }
  }

X
Xin Pan 已提交
210
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
211
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
212 213 214
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
215 216 217
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
218 219 220
  }

  void ClearGradient() {
221
    VLOG(1) << "clear gradient of " << Name();
M
minqiyang 已提交
222 223 224 225 226 227 228
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
X
Xin Pan 已提交
229 230
  }

M
minqiyang 已提交
231
  framework::LoDTensor& GradValue();
232

M
minqiyang 已提交
233 234
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
235

M
minqiyang 已提交
236
  inline std::string GradName() const {
237
    return string::Sprintf("%s@IGrad", Name());
M
minqiyang 已提交
238 239
  }

240
  std::string name_;
241 242
  framework::proto::VarType::Type dtype_;
  platform::Place place_;
M
minqiyang 已提交
243

M
minqiyang 已提交
244 245
  framework::Variable* var_;
  VarBase* grads_;
246

X
Xin Pan 已提交
247
 private:
248
  bool stop_gradient_;
249 250
  bool persistable_;

X
Xin Pan 已提交
251 252 253
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
254 255
};

M
minqiyang 已提交
256 257 258
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
259
class PYBIND11_HIDDEN OpBase {
260
 public:
261 262 263
  OpBase(const std::string& type)
      : type_(type),
        trace_id_(-1),
X
Xin Pan 已提交
264
        forward_id_(-1),
M
minqiyang 已提交
265
        backward_id_(-1),
266 267
        place_(platform::CPUPlace()),
        backward_hooks_() {}
268 269

  virtual ~OpBase() {
M
minqiyang 已提交
270 271
    // TODO(minqiyang): remove op_desc from block_desc in tracer
    //
272 273 274 275 276
    // reset all output vars' pre op
    for (auto iter : output_vars_) {
      for (VarBase* var : iter.second) {
        var->ResetPreOp(this);
      }
X
Xin Pan 已提交
277
    }
278

279
    // release resource
X
Xin Pan 已提交
280 281 282
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
283 284
  }

X
Xin Pan 已提交
285
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
286

287 288 289 290 291 292
  inline std::string Type() const { return type_; }
  inline std::string GradOpType(size_t index) const {
    PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]);
    return grad_op_descs_[index]->Type();
  }

293 294 295 296
  void RegisterBackwardHooks(const py::object& callable);

  void InvokeBackwardHooks();

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  void TrackPreOp(const VarBase* inp_var, const std::string& inp_name) {
    if (inp_var->PreOp() && !inp_var->IsStopGradient()) {
      VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot "
              << inp_name;
      pre_ops_[inp_name].push_back(inp_var->PreOp());
      pre_ops_out_idx_[inp_name].push_back(inp_var->PreOpOutIdx());
    } else {
      VLOG(3) << "no pre op in slot " << inp_name
              << " input var stop_gradient: " << inp_var->IsStopGradient();
      pre_ops_[inp_name].push_back(nullptr);
      // pre_ops_out_idx_[inp_name].push_back(-1);
    }
  }

  std::string type_;
  // One of `trace_id_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
  int trace_id_;
X
Xin Pan 已提交
315
  int forward_id_;
X
polish  
Xin Pan 已提交
316

X
Xin Pan 已提交
317
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
318
  // not both.
X
polish  
Xin Pan 已提交
319
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
320
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
321
  int backward_id_;
X
Xin Pan 已提交
322

P
Paddle CI 已提交
323
  platform::Place place_;
M
minqiyang 已提交
324

M
minqiyang 已提交
325 326 327
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
328
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
329

X
polish  
Xin Pan 已提交
330
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
331
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
332
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
333
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
334

335
  std::vector<py::object> backward_hooks_;
336 337 338 339 340 341 342 343 344 345
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
346
};
347

X
Xin Pan 已提交
348 349 350 351
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
352 353
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
354

X
Xin Pan 已提交
355
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
356

X
polish  
Xin Pan 已提交
357 358
  static int NumFuncs();

359 360
  static std::vector<framework::Variable*> Apply(
      int func_id, const std::vector<VarBase*>& inputs);
X
Xin Pan 已提交
361

X
polish  
Xin Pan 已提交
362 363
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
364

X
polish  
Xin Pan 已提交
365 366 367
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
368 369 370 371
};

}  // namespace imperative
}  // namespace paddle