test_inference_model_io.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

M
minqiyang 已提交
19
import six
D
dzhwinter 已提交
20
import numpy as np
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
import warnings
24

25 26 27
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
28
from paddle.fluid.compiler import CompiledProgram
29 30
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.io import save_inference_model, load_inference_model
D
dzhwinter 已提交
31
from paddle.fluid.transpiler import memory_optimize
32 33 34 35 36 37 38 39


class TestBook(unittest.TestCase):
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
40 41 42 43 44 45 46 47

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
48
            avg_cost = layers.mean(cost)
49 50 51

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
52 53 54 55 56 57

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
58
        for i in six.moves.xrange(100):
D
dzhwinter 已提交
59
            tensor_x = np.array(
60
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
61
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
62 63 64 65 66 67 68

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
69 70 71 72
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
73

M
minqiyang 已提交
74
        six.moves.reload_module(executor)  # reload to build a new scope
75 76 77 78 79 80 81 82 83 84
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
D
dzhwinter 已提交
85
        actual = outs[0]
86 87 88

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
89 90
        print("fetch %s" % str(fetch_vars[0]))
        self.assertTrue("scale" in str(fetch_vars[0]))
91 92 93
        self.assertEqual(expected, actual)


D
dzhwinter 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model2"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
114
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def test_save_inference_model_with_auc(self):
        MODEL_DIR = "./tmp/inference_model4"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
            acc = fluid.layers.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                                  label=y)
            cost = fluid.layers.cross_entropy(input=predict, label=y)
            avg_cost = fluid.layers.mean(x=cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe,
                                 program)
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
143

T
tangwei12 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model3"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
            loss_name=avg_cost.name)

C
chengduo 已提交
169
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
T
tangwei12 已提交
170 171 172 173
        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog])


174 175
if __name__ == '__main__':
    unittest.main()