elementwise_mul_op.cu 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17
#include "paddle/fluid/platform/complex.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/platform/float16.h"
19

Y
YuanRisheng 已提交
20 21 22 23
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
24
namespace ops = paddle::operators;
W
Wu Yi 已提交
25
namespace plat = paddle::platform;
26

27 28 29
namespace paddle {
namespace operators {

30 31 32 33 34
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
35 36 37 38 39
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
40 41
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
Y
YuanRisheng 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    if (x_var->IsType<framework::SelectedRows>()) {
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
      LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
55

Y
YuanRisheng 已提交
56 57 58 59
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
60
      pten::Multiply<T>(cuda_ctx, *pt_x.get(), *pt_y.get(), axis, pt_z.get());
Y
YuanRisheng 已提交
61 62 63 64 65 66
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
67 68 69
  }
};

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename T>
static __global__ void SimpleElemwiseMulGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = y[col] * o;
    dy[col] = x[col] * o;
    col += blockDim.x * gridDim.x;
  }
}

86
template <>
87 88 89 90
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<float>>(
    const plat::complex<float>* x, const plat::complex<float>* y,
    const plat::complex<float>* out, const plat::complex<float>* dout,
    int64_t size, plat::complex<float>* dx, plat::complex<float>* dy) {
91 92 93
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
94 95 96
    plat::complex<float> o = dout[col];
    dx[col] = plat::complex<float>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<float>(x[col].real, -x[col].imag) * o;
97 98 99 100 101
    col += blockDim.x * gridDim.x;
  }
}

template <>
102 103 104 105
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<double>>(
    const plat::complex<double>* x, const plat::complex<double>* y,
    const plat::complex<double>* out, const plat::complex<double>* dout,
    int64_t size, plat::complex<double>* dx, plat::complex<double>* dy) {
106 107 108
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
109 110 111
    plat::complex<double> o = dout[col];
    dx[col] = plat::complex<double>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<double>(x[col].real, -x[col].imag) * o;
112 113 114 115
    col += blockDim.x * gridDim.x;
  }
}

116 117 118 119 120 121 122 123
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
124
  dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
125
  auto size = x->numel();
126
  dim3 grid_size =
127
      dim3((size + ELEMENTWISE_BLOCK_SIZE - 1) / ELEMENTWISE_BLOCK_SIZE, 1);
128
  SimpleElemwiseMulGradCUDAKernel<
129
      T><<<grid_size, block_size, 0,
130 131 132 133
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}
134 135 136 137

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
138
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
139 140 141 142
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
143
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
144
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
145 146
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
147
REGISTER_OP_CUDA_KERNEL(
148
    elementwise_mul_grad,
W
Wu Yi 已提交
149 150 151 152
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
153
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
154
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
155 156 157 158
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
159 160 161 162 163
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
164
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
165
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
166
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
167
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
168
                                        plat::complex<float>>,
169
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
170
                                        plat::complex<double>>);
171 172 173 174 175 176 177 178 179 180 181 182
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);