analyzer_dam_tester.cc 12.7 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

Z
ZhenWang 已提交
17
DEFINE_int32(max_turn_num, 9,
Z
ZhenWang 已提交
18 19
             "The max turn number: 1 for the small and 9 for the normal.");

Z
Zhen Wang 已提交
20 21
namespace paddle {
namespace inference {
Z
ZhenWang 已提交
22 23 24

constexpr int32_t kMaxTurnLen = 50;

Z
Zhen Wang 已提交
25 26 27
static std::vector<float> result_data;

struct DataRecord {
Z
ZhenWang 已提交
28 29 30
  std::vector<std::vector<int64_t>> *turns;
  std::vector<std::vector<float>> *turns_mask;
  std::vector<std::vector<int64_t>> response;     // response data : 1
Z
Zhen Wang 已提交
31 32 33 34
  std::vector<std::vector<float>> response_mask;  // response mask data : 1
  size_t batch_iter{0};
  size_t batch_size{1};
  size_t num_samples;  // total number of samples
Z
ZhenWang 已提交
35 36 37 38 39 40 41 42

  DataRecord() {
    turns = new std::vector<std::vector<
        int64_t>>[FLAGS_max_turn_num];  // turns data : FLAGS_max_turn_num
    turns_mask = new std::vector<std::vector<
        float>>[FLAGS_max_turn_num];  // turns mask data : FLAGS_max_turn_num
  }

Z
Zhen Wang 已提交
43
  explicit DataRecord(const std::string &path, int batch_size = 1)
Z
ZhenWang 已提交
44 45
      : DataRecord() {
    this->batch_size = batch_size;
Z
Zhen Wang 已提交
46 47
    Load(path);
  }
Z
ZhenWang 已提交
48 49 50 51 52 53

  ~DataRecord() {
    delete[] turns;
    delete[] turns_mask;
  }

Z
Zhen Wang 已提交
54 55 56 57 58
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= response.size()) {
Z
ZhenWang 已提交
59
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
60 61 62
        data.turns[i].assign(turns[i].begin() + batch_iter,
                             turns[i].begin() + batch_end);
      }
Z
ZhenWang 已提交
63
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77
        data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
                                  turns_mask[i].begin() + batch_end);
      }
      data.response.assign(response.begin() + batch_iter,
                           response.begin() + batch_end);
      data.response_mask.assign(response_mask.begin() + batch_iter,
                                response_mask.begin() + batch_end);
      CHECK(!data.response.empty());
      CHECK(!data.response_mask.empty());
      CHECK_EQ(data.response.size(), data.response_mask.size());
    }
    batch_iter += batch_size;
    return data;
  }
Z
ZhenWang 已提交
78

Z
Zhen Wang 已提交
79 80 81 82 83 84 85 86 87
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    size_t num_lines = 0;
    result_data.clear();
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ',', &data);
Z
ZhenWang 已提交
88
      CHECK_EQ(data.size(), (size_t)(2 * FLAGS_max_turn_num + 3));
Z
Zhen Wang 已提交
89
      // load turn data
Z
ZhenWang 已提交
90 91
      std::vector<int64_t> turns_tmp[FLAGS_max_turn_num];
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
92 93 94 95
        split_to_int64(data[i], ' ', &turns_tmp[i]);
        turns[i].push_back(std::move(turns_tmp[i]));
      }
      // load turn_mask data
Z
ZhenWang 已提交
96 97 98
      std::vector<float> turns_mask_tmp[FLAGS_max_turn_num];
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
        split_to_float(data[FLAGS_max_turn_num + i], ' ', &turns_mask_tmp[i]);
Z
Zhen Wang 已提交
99 100 101 102
        turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
      }
      // load response data
      std::vector<int64_t> response_tmp;
Z
ZhenWang 已提交
103
      split_to_int64(data[2 * FLAGS_max_turn_num], ' ', &response_tmp);
Z
Zhen Wang 已提交
104 105 106
      response.push_back(std::move(response_tmp));
      // load response_mask data
      std::vector<float> response_mask_tmp;
Z
ZhenWang 已提交
107
      split_to_float(data[2 * FLAGS_max_turn_num + 1], ' ', &response_mask_tmp);
Z
Zhen Wang 已提交
108 109 110
      response_mask.push_back(std::move(response_mask_tmp));
      // load result data
      float result_tmp;
Z
ZhenWang 已提交
111
      result_tmp = std::stof(data[2 * FLAGS_max_turn_num + 2]);
Z
Zhen Wang 已提交
112 113 114 115 116 117 118 119
      result_data.push_back(result_tmp);
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
Z
ZhenWang 已提交
120 121
  PaddleTensor turns_tensor[FLAGS_max_turn_num];
  PaddleTensor turns_mask_tensor[FLAGS_max_turn_num];
Z
Zhen Wang 已提交
122 123 124 125 126 127
  PaddleTensor response_tensor;
  PaddleTensor response_mask_tensor;
  std::string turn_pre = "turn_";
  std::string turn_mask_pre = "turn_mask_";

  auto one_batch = data->NextBatch();
Y
Yan Chunwei 已提交
128
  PADDLE_ENFORCE(!one_batch.response.empty());
Z
Zhen Wang 已提交
129
  int size = one_batch.response[0].size();
Z
ZhenWang 已提交
130
  CHECK_EQ(size, kMaxTurnLen);
Z
Zhen Wang 已提交
131
  // turn tensor assignment
Z
ZhenWang 已提交
132
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
133 134 135 136 137 138
    turns_tensor[i].name = turn_pre + std::to_string(i);
    turns_tensor[i].shape.assign({batch_size, size, 1});
    turns_tensor[i].dtype = PaddleDType::INT64;
    TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
  }
  // turn mask tensor assignment
Z
ZhenWang 已提交
139
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
    turns_mask_tensor[i].shape.assign({batch_size, size, 1});
    turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
    TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
  }
  // response tensor assignment
  response_tensor.name = "response";
  response_tensor.shape.assign({batch_size, size, 1});
  response_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&response_tensor, one_batch.response);
  // response mask tensor assignment
  response_mask_tensor.name = "response_mask";
  response_mask_tensor.shape.assign({batch_size, size, 1});
  response_mask_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);

  // Set inputs.
Z
ZhenWang 已提交
157
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
158 159
    input_slots->push_back(std::move(turns_tensor[i]));
  }
Z
ZhenWang 已提交
160
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
161 162 163 164 165 166
    input_slots->push_back(std::move(turns_mask_tensor[i]));
  }
  input_slots->push_back(std::move(response_tensor));
  input_slots->push_back(std::move(response_mask_tensor));
}

167
void SetConfig(AnalysisConfig *cfg) {
168 169 170
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim(true);
Z
Zhen Wang 已提交
171 172
}

173 174 175 176 177 178 179 180 181
void SetOptimConfig(AnalysisConfig *cfg) {
  std::string optimModelPath =
      FLAGS_infer_model.substr(0, FLAGS_infer_model.find_last_of("/")) +
      "/saved_optim_model";
  cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params");
  cfg->SwitchIrOptim(true);
  cfg->SwitchSpecifyInputNames();
}

Z
Zhen Wang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int test_batch_num =
      FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "The number of samples to be test: "
            << test_batch_num * FLAGS_batch_size;
  for (int bid = 0; bid < test_batch_num; ++bid) {
    input_slots.clear();
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
197
void profile(bool use_mkldnn = false) {
198
  AnalysisConfig cfg;
Z
Zhen Wang 已提交
199 200
  SetConfig(&cfg);

201 202
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
203 204 205
    // Enable all the mkldnn supported ops except conv3d in dam
    std::unordered_set<std::string> op_list = {"softmax", "elementwise_add",
                                               "relu"};
206
    cfg.SetMKLDNNOp(op_list);
207 208
  }

209
  std::vector<std::vector<PaddleTensor>> outputs;
Z
Zhen Wang 已提交
210 211
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
Y
Yan Chunwei 已提交
212

213 214
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
Z
Zhen Wang 已提交
215 216 217

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_GT(outputs.size(), 0);
218 219 220
    auto output = outputs.back();
    PADDLE_ENFORCE_GT(output.size(), 0);
    size_t size = GetSize(output[0]);
Z
Zhen Wang 已提交
221
    PADDLE_ENFORCE_GT(size, 0);
222
    float *result = static_cast<float *>(output[0].data.data());
Z
Zhen Wang 已提交
223 224 225 226 227 228
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(result[i], result_data[i], 1e-3);
    }
  }
}

229 230 231 232 233
TEST(Analyzer_dam, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_dam, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

Z
Zhen Wang 已提交
234 235
// Check the fuse status
TEST(Analyzer_dam, fuse_statis) {
236
  AnalysisConfig cfg;
Z
Zhen Wang 已提交
237 238
  SetConfig(&cfg);

T
Tao Luo 已提交
239 240 241 242 243
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
Z
Zhen Wang 已提交
244 245 246
}

// Compare result of NativeConfig and AnalysisConfig
247 248
void compare(bool use_mkldnn = false) {
  AnalysisConfig cfg;
Z
Zhen Wang 已提交
249
  SetConfig(&cfg);
250 251
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
252 253 254
    // Enable all the mkldnn supported ops except conv3d in dam
    std::unordered_set<std::string> op_list = {"softmax", "elementwise_add",
                                               "relu"};
255
    cfg.SetMKLDNNOp(op_list);
256
  }
Z
Zhen Wang 已提交
257 258 259 260

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);

T
Tao Luo 已提交
261 262
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
Z
Zhen Wang 已提交
263 264
}

Y
Yan Chunwei 已提交
265
// Compare result of NativeConfig and AnalysisConfig with memory optimization.
Y
Yan Chunwei 已提交
266
TEST(Analyzer_dam, compare_with_static_memory_optim) {
Y
Yan Chunwei 已提交
267 268
  // The small dam will core in CI, but works in local.
  if (FLAGS_max_turn_num == 9) {
269
    AnalysisConfig cfg, cfg1;
Y
Yan Chunwei 已提交
270 271 272 273 274 275
    DataRecord data(FLAGS_infer_data, FLAGS_batch_size);

    std::vector<std::vector<PaddleTensor>> input_slots_all;
    SetInput(&input_slots_all);
    // Run the first time to force to update memory cache
    SetConfig(&cfg);
Y
Yan Chunwei 已提交
276
    cfg.EnableMemoryOptim(true, true /*force update*/);
Y
Yan Chunwei 已提交
277 278 279 280 281 282 283

    CompareNativeAndAnalysis(
        reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
        input_slots_all);

    // Run second time to use the memory cache and perform memory optimization.
    SetConfig(&cfg1);
Y
Yan Chunwei 已提交
284
    cfg1.EnableMemoryOptim(true, false /*do not force update*/);
Y
Yan Chunwei 已提交
285 286 287 288 289 290 291

    CompareNativeAndAnalysis(
        reinterpret_cast<const PaddlePredictor::Config *>(&cfg1),
        input_slots_all);
  }
}

Y
Yan Chunwei 已提交
292 293 294
TEST(Analyzer_dam, compare_with_dynamic_memory_optim) {
  // The small dam will core in CI, but works in local.
  if (FLAGS_max_turn_num == 9) {
295
    AnalysisConfig cfg, cfg1;
Y
Yan Chunwei 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309
    DataRecord data(FLAGS_infer_data, FLAGS_batch_size);

    std::vector<std::vector<PaddleTensor>> input_slots_all;
    SetInput(&input_slots_all);
    // Run the first time to force to update memory cache
    SetConfig(&cfg);
    cfg.EnableMemoryOptim();

    CompareNativeAndAnalysis(
        reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
        input_slots_all);
  }
}

310
TEST(Analyzer_dam, compare) { compare(); }
Y
Yan Chunwei 已提交
311

312 313 314 315
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_dam, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif

L
luotao1 已提交
316 317 318 319 320 321 322 323 324 325 326
// Compare Deterministic result
TEST(Analyzer_dam, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
// Save optim model
TEST(Analyzer_dam, save_optim_model) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  std::string optimModelPath =
      FLAGS_infer_model.substr(0, FLAGS_infer_model.find_last_of("/")) +
      "/saved_optim_model";
  mkdir(optimModelPath.c_str(), 0777);
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))
      ->SaveOptimModel(optimModelPath);
}

void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config,
                         const PaddlePredictor::Config *optim_config,
                         const std::vector<std::vector<PaddleTensor>> &inputs) {
  PrintConfig(orig_config, true);
  PrintConfig(optim_config, true);
  std::vector<std::vector<PaddleTensor>> orig_outputs, optim_outputs;
  TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false);
  TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false);
  CompareResult(orig_outputs.back(), optim_outputs.back());
}

TEST(Analyzer_dam, compare_optim_orig) {
  AnalysisConfig orig_cfg;
  AnalysisConfig optim_cfg;
  SetConfig(&orig_cfg);
  SetOptimConfig(&optim_cfg);
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareOptimAndOrig(
      reinterpret_cast<const PaddlePredictor::Config *>(&orig_cfg),
      reinterpret_cast<const PaddlePredictor::Config *>(&optim_cfg),
      input_slots_all);
}

Z
Zhen Wang 已提交
366 367
}  // namespace inference
}  // namespace paddle