launch.py 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
71
from paddle.distributed.fleet import launch_utils
72

73
# TODO(danleifeng): Don't import * from a module
74
from paddle.distributed.fleet.launch_utils import *
75 76
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
77

K
kuizhiqing 已提交
78
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
79

80 81
__all__ = []

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
99
    base_group = parser.add_argument_group("Base Parameters")
100

101 102
    base_group.add_argument(
        "--log_dir",
103
        type=str,
104
        default="log",
G
Guoxia Wang 已提交
105
        help="The path for each process's log. Default --log_dir=log/")
106 107 108 109 110 111
    base_group.add_argument(
        "--backend",
        type=str,
        default="auto",
        help="Specifize the backend, can be gloo|nccl|bkcl|auto. Default value is auto which perfers nccl or bkcl."
    )
112 113 114 115 116 117 118 119
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

120 121 122
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
123
        default=None,
124 125
        help="run mode of job, can be:collective/ps/ps-heter")

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
146

147
    base_group.add_argument(
148 149 150 151 152 153 154
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
176 177 178 179 180 181
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
        help="User defined heter devices in each stage cpu;gpu;cpu")
182 183 184 185

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
186 187 188
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3")
189
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
190

191 192 193 194 195 196 197 198 199 200 201 202
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port")
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env")
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force")

203 204 205
    return parser.parse_args()


206
def get_cluster_from_args(args, device_mode, devices_per_proc):
207 208 209 210
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
211 212 213 214
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
215

216
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
217
        % (node_ip, node_ips)
218 219
    node_rank = node_ips.index(node_ip)

220
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
221 222 223 224 225
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
226
        free_ports = find_free_ports(len(devices_per_proc))
227 228 229 230 231
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
232
            start_port = int(os.environ.get('FLAGS_START_PORT'))
233

234 235 236
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
237

238 239 240
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
241 242
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
243 244


245 246 247 248 249 250 251 252 253 254 255 256
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


K
kuizhiqing 已提交
257 258
def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
259
    if args.backend == 'gloo': cpuonly_check(args)
K
kuizhiqing 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
        # for ascend
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port)
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))

    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir
293
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
K
kuizhiqing 已提交
294 295 296 297 298 299 300 301 302 303 304

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs)

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
305

K
kuizhiqing 已提交
306
    while True:
K
kuizhiqing 已提交
307 308
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
309

K
kuizhiqing 已提交
310 311 312 313
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
314

K
kuizhiqing 已提交
315 316 317 318 319 320
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
321 322 323

    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)
324

325

326 327 328 329 330 331 332
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
333 334 335 336 337
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
338 339 340 341 342 343

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


344 345 346 347 348 349 350 351 352 353 354 355
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
    else:
        args.backend = 'gloo'


356
def which_distributed_mode(args):
357
    infer_backend(args)  # modify the args.backend
358 359 360 361 362 363 364 365 366 367
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

368
    ps_args = [
369
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
370
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
371
    ]
372
    collective_args = ['--ips']
373

374
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
375 376 377 378 379 380 381 382

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
383 384 385 386 387 388

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

389
    if fluid.core.is_compiled_with_cuda():
390
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
391 392
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
393
    elif fluid.core.is_compiled_with_xpu():
394
        accelerators = fluid.core.get_xpu_device_count()
395
    else:
396
        accelerators = 0
397

398 399
    if len(has_ps_args) > 0:
        logger.info(
400 401
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
402 403 404 405 406
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
407
    elif len(has_collective_args) > 0:
408 409
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
410
        return DistributeMode.COLLECTIVE
411
    else:
412 413
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
414 415 416 417 418 419 420
            if args.servers:
                logger.warning(
                    "Not found distinct arguments and not compiled with cuda or xpu. \
But found args.servers not empty, default use ps mode")
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
421 422
        else:
            logger.warning(
423
                "Not found distinct arguments and compiled with cuda or xpu. Default use collective mode"
424 425
            )
            return DistributeMode.COLLECTIVE
426 427 428


def launch():
G
Guoxia Wang 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
                             training_script ...    


    Base Parameters:
G
Guoxia Wang 已提交
445
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
446

G
Guoxia Wang 已提交
447
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
448

G
Guoxia Wang 已提交
449
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
450

G
Guoxia Wang 已提交
451
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
452 453 454

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
        
G
Guoxia Wang 已提交
455
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
G
Guoxia Wang 已提交
456 457 458
        
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

G
Guoxia Wang 已提交
459
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``traing.py``
G
Guoxia Wang 已提交
460

G
Guoxia Wang 已提交
461
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
462 463

    Collective Parameters:
G
Guoxia Wang 已提交
464
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
465 466

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
467
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
468

G
Guoxia Wang 已提交
469
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
470

471
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
472 473 474 475 476

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

477 478 479
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
480 481 482 483

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
484
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
485

G
Guoxia Wang 已提交
486
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
487

G
Guoxia Wang 已提交
488
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
489 490 491 492 493 494 495 496 497 498 499

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
G
Guoxia Wang 已提交
500
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
501 502 503 504 505 506 507

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
508 509 510
            # The parameters of --gpus and --ips must be consistent in each node.

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 
G
Guoxia Wang 已提交
511 512 513 514 515 516 517 518 519 520 521 522

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
523
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
G
Guoxia Wang 已提交
524 525 526 527 528 529 530
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
531
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
545
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
G
Guoxia Wang 已提交
546 547 548 549 550 551 552 553
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
554
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
570
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
G
Guoxia Wang 已提交
571 572 573 574 575 576 577 578
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
579
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
        
    """

599 600 601 602
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

603
    if args.backend == 'auto':
604 605
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
606 607 608 609 610
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

611 612
    assert args.backend in ['gloo', 'nccl', 'bkcl', 'unknown']

613 614
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
615

616 617 618
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
619 620 621
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
622

K
kuizhiqing 已提交
623 624
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
625
    else:
K
kuizhiqing 已提交
626
        launch_ps(args, distribute_mode)
627 628 629 630


if __name__ == "__main__":
    launch()