new_exec.h 40.8 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gperftools/profiler.h>
#include <chrono>
P
phlrain 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <iostream>
#include <string>

#include <map>
#include <memory>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
W
wanghuancoder 已提交
30 31
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
P
phlrain 已提交
32 33 34 35
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
P
phlrain 已提交
36
#include "paddle/fluid/framework/variable_helper.h"
W
wanghuancoder 已提交
37
#include "paddle/fluid/platform/device_context.h"
P
phlrain 已提交
38 39
#include "paddle/fluid/platform/init.h"

W
wanghuancoder 已提交
40 41
namespace paddle {
namespace framework {
P
phlrain 已提交
42

W
wanghuancoder 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class RuntimeContextV2 {
 public:
  RuntimeContextV2(std::vector<std::vector<Variable*>>& in_values,   // NOLINT
                   std::vector<std::vector<Variable*>>& out_values,  // NOLINT
                   const std::map<std::string, size_t>& in_name_map,
                   const std::map<std::string, size_t>& out_name_map)
      : input_values(std::move(in_values)),
        output_values(std::move(out_values)),
        input_name_map(in_name_map),
        output_name_map(out_name_map) {}
  std::vector<std::vector<Variable*>> input_values;
  std::vector<std::vector<Variable*>> output_values;
  const std::map<std::string, size_t>& input_name_map;
  const std::map<std::string, size_t>& output_name_map;
};
P
phlrain 已提交
58

W
wanghuancoder 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class ExecutionContextV2 : public ExecutionContext {
 public:
  ExecutionContextV2(const OperatorBase& op, const Scope& scope,
                     const platform::DeviceContext& device_context,
                     const RuntimeContextV2& ctx)
      : ExecutionContext(op, scope, device_context, RuntimeContext({}, {})),
        ctx_(ctx) {}

  const std::vector<Variable*> MultiInputVar(const std::string& name) const {
    LogVarUsageIfUnusedVarCheckEnabled(name);

    auto it = ctx_.input_name_map.find(name);
    if (it == ctx_.input_name_map.end()) {
      return {};
    }
    // return {it->second.begin(), it->second.end()};
    return ctx_.input_values[it->second];
  }
P
phlrain 已提交
77

W
wanghuancoder 已提交
78 79 80 81 82 83 84 85
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto it = ctx_.output_name_map.find(name);
    if (it == ctx_.output_name_map.end()) {
      return {};
    }
    // return it->second;
    return ctx_.output_values[it->second];
  }
P
phlrain 已提交
86

W
wanghuancoder 已提交
87 88
  std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
W
wanghuancoder 已提交
89
    vec_temp.reserve(ctx_.input_name_map.size());
W
wanghuancoder 已提交
90

W
wanghuancoder 已提交
91
    for (auto& input : ctx_.input_name_map) {
W
wanghuancoder 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

  const Variable* InputVar(const std::string& name) const {
    LogVarUsageIfUnusedVarCheckEnabled(name);

    auto it = ctx_.input_name_map.find(name);
    if (it == ctx_.input_name_map.end()) return nullptr;

    PADDLE_ENFORCE_LE(
        ctx_.input_values[it->second].size(), 1UL,
        platform::errors::InvalidArgument(
            "Operator %s's input %s should contain only one variable.",
            GetOp().Type(), name));
    return ctx_.input_values[it->second].empty()
               ? nullptr
               : ctx_.input_values[it->second][0];
  }

  Variable* OutputVar(const std::string& name) const {
    auto it = ctx_.output_name_map.find(name);
    if (it == ctx_.output_name_map.end()) return nullptr;

    PADDLE_ENFORCE_LE(
        ctx_.output_values[it->second].size(), 1UL,
        platform::errors::InvalidArgument(
            "Operator %s's output %s should contain only one variable.",
            GetOp().Type(), name));
    return ctx_.output_values[it->second].empty()
               ? nullptr
               : ctx_.output_values[it->second][0];
  }

  const RuntimeContextV2& ctx_;
};
P
phlrain 已提交
130 131 132

class RuntimeInferShapeContext : public InferShapeContext {
 public:
W
wanghuancoder 已提交
133
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContextV2& ctx)
P
phlrain 已提交
134 135 136 137
      : op_(op), ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    // has only one input
W
wanghuancoder 已提交
138
    const auto& ins = ctx_.input_name_map;
P
phlrain 已提交
139 140 141 142
    auto it = ins.find(name);
    if (it == ins.end()) {
      return false;
    }
W
wanghuancoder 已提交
143
    const auto& in = ctx_.input_values[it->second];
P
phlrain 已提交
144 145 146 147 148 149 150 151 152 153
    if (in.size() == 0) return false;
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
    return in[0] != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    // has only one output
W
wanghuancoder 已提交
154
    const auto& outs = ctx_.output_name_map;
P
phlrain 已提交
155 156 157 158
    auto it = outs.find(name);
    if (it == outs.end()) {
      return false;
    }
W
wanghuancoder 已提交
159
    const auto& out = ctx_.output_values[it->second];
P
phlrain 已提交
160 161 162 163 164 165 166 167 168 169 170
    if (out.size() == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
    return out[0] != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
W
wanghuancoder 已提交
171
    const auto& ins = ctx_.input_name_map;
P
phlrain 已提交
172
    auto it = ins.find(name);
W
wanghuancoder 已提交
173
    if (it == ins.end() || ctx_.input_values[it->second].empty()) {
P
phlrain 已提交
174 175
      return false;
    }
W
wanghuancoder 已提交
176
    for (auto& input : ctx_.input_values[it->second]) {
P
phlrain 已提交
177 178 179 180 181 182 183 184
      if (input == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
W
wanghuancoder 已提交
185
    const auto& outs = ctx_.output_name_map;
P
phlrain 已提交
186
    auto it = outs.find(name);
W
wanghuancoder 已提交
187
    if (it == outs.end() || ctx_.output_values[it->second].empty()) {
P
phlrain 已提交
188 189
      return false;
    }
W
wanghuancoder 已提交
190
    for (auto& output : ctx_.output_values[it->second]) {
P
phlrain 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      if (output == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  std::vector<std::string> Inputs(const std::string& name) const override {
    return op_.Inputs(name);
  }

  std::vector<std::string> Outputs(const std::string& name) const override {
    return op_.Outputs(name);
  }

  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
W
wanghuancoder 已提交
233 234
    auto in_it = ctx_.input_name_map.find(in);
    auto out_it = ctx_.output_name_map.find(out);
P
phlrain 已提交
235
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
236
        in_it, ctx_.input_name_map.end(),
P
phlrain 已提交
237 238
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
239
        out_it, ctx_.output_name_map.end(),
P
phlrain 已提交
240
        platform::errors::NotFound("Output %s does not exist.", out));
W
wanghuancoder 已提交
241
    PADDLE_ENFORCE_LT(i, ctx_.input_values[in_it->second].size(),
P
phlrain 已提交
242 243 244
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
W
wanghuancoder 已提交
245 246
                          ctx_.input_values[in_it->second].size(), i));
    PADDLE_ENFORCE_LT(j, ctx_.output_values[out_it->second].size(),
P
phlrain 已提交
247 248 249
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
W
wanghuancoder 已提交
250
                          ctx_.output_values[out_it->second].size(), j));
P
phlrain 已提交
251

W
wanghuancoder 已提交
252 253
    Variable* in_var = ctx_.input_values[in_it->second][i];
    Variable* out_var = ctx_.output_values[out_it->second][j];
P
phlrain 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows."));
    }
  }

  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
W
wanghuancoder 已提交
280 281 282
    auto in_it = ctx_.input_name_map.find(in);
    auto out_it = ctx_.output_name_map.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.input_name_map.end(),
P
phlrain 已提交
283 284 285
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
286
        out_it, ctx_.output_name_map.end(),
P
phlrain 已提交
287 288 289
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

W
wanghuancoder 已提交
290 291
    auto& in_var_list = ctx_.input_values[in_it->second];
    auto& out_var_list = ctx_.output_values[out_it->second];
P
phlrain 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
            "Op [%s]: Input var size should be equal with output var size",
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
W
wanghuancoder 已提交
325 326
    auto in_it = ctx_.input_name_map.find(in);
    auto out_it = ctx_.output_name_map.find(out);
P
phlrain 已提交
327
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
328
        in_it, ctx_.input_name_map.end(),
P
phlrain 已提交
329 330
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
331
        out_it, ctx_.output_name_map.end(),
P
phlrain 已提交
332
        platform::errors::NotFound("Output %s does not exist.", out));
W
wanghuancoder 已提交
333
    PADDLE_ENFORCE_LT(i, ctx_.input_values[in_it->second].size(),
P
phlrain 已提交
334 335 336
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
W
wanghuancoder 已提交
337 338
                          ctx_.input_values[in_it->second].size(), i));
    PADDLE_ENFORCE_LT(j, ctx_.output_values[out_it->second].size(),
P
phlrain 已提交
339 340 341
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
W
wanghuancoder 已提交
342
                          ctx_.output_values[out_it->second].size(), j));
P
phlrain 已提交
343

W
wanghuancoder 已提交
344
    Variable* in_var = ctx_.input_values[in_it->second].at(i);
P
phlrain 已提交
345
    if (!in_var->IsType<LoDTensor>()) return;
W
wanghuancoder 已提交
346
    Variable* out_var = ctx_.output_values[out_it->second].at(j);
P
phlrain 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
    auto& in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());

// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
  }

  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetLoDLevel is only used in compile time. The calculation of "
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel."));
  }

  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetLoDLevel is only used in compile time. The calculation of "
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel."));
  }

  bool IsRuntime() const override { return true; }

  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
W
wanghuancoder 已提交
438
    // std::cerr << "set out dim" << std::endl;
P
phlrain 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

 protected:
  DDim GetDim(Variable* var) const {
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
    }
  }

  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
  }

  void SetDim(Variable* var, const DDim& dim) {
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
    }
  }

  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
  }

  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
    return ToVarType(var->Type());
  }

 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
W
wanghuancoder 已提交
535
    auto it = ctx_.input_name_map.find(name);
P
phlrain 已提交
536
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
537
        it, ctx_.input_name_map.end(),
P
phlrain 已提交
538 539
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
W
wanghuancoder 已提交
540
    return ctx_.input_values[it->second];
P
phlrain 已提交
541 542 543
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
W
wanghuancoder 已提交
544
    auto it = ctx_.output_name_map.find(name);
P
phlrain 已提交
545
    PADDLE_ENFORCE_NE(
W
wanghuancoder 已提交
546
        it, ctx_.output_name_map.end(),
P
phlrain 已提交
547 548
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
W
wanghuancoder 已提交
549
    return ctx_.output_values[it->second];
P
phlrain 已提交
550 551 552
  }

  const OperatorBase& op_;
W
wanghuancoder 已提交
553
  const RuntimeContextV2& ctx_;
P
phlrain 已提交
554 555
};

W
wanghuancoder 已提交
556
framework::ProgramDesc load_from_file(const std::string& file_name) {
P
phlrain 已提交
557
  std::ifstream fin(file_name, std::ios::in | std::ios::binary);
W
wanghuancoder 已提交
558 559 560
  if (!fin.is_open()) {
    std::cout << "open file " << file_name << " faild!" << std::endl;
  }
P
phlrain 已提交
561 562 563 564 565
  fin.seekg(0, std::ios::end);
  std::string buffer(fin.tellg(), ' ');
  fin.seekg(0, std::ios::beg);
  fin.read(&buffer[0], buffer.size());
  fin.close();
W
wanghuancoder 已提交
566
  ProgramDesc program_desc(buffer);
P
phlrain 已提交
567 568 569
  return program_desc;
}

W
wanghuancoder 已提交
570 571 572
struct VariableScope {
  std::vector<std::unique_ptr<Variable>> var_list;
  std::map<std::string, size_t> name2id;
P
phlrain 已提交
573 574
};

W
wanghuancoder 已提交
575 576 577 578 579 580 581 582 583 584 585 586
struct OpFuncNode {
  // int unsed;
  // std::map< std::string, std::vector<int> > input_index;
  // std::map< std::string, std::vector<int> > output_index;
  std::vector<std::vector<size_t>> input_index;
  std::vector<std::vector<size_t>> output_index;
  std::map<std::string, size_t> input_name_map;
  std::map<std::string, size_t> output_name_map;

  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
  OpKernelFunc kernel_func_;
};
P
phlrain 已提交
587

W
wanghuancoder 已提交
588 589 590 591 592 593 594
int convert(const platform::Place& place) {
  if (is_cpu_place(place)) {
    return 0;
  }
  if (is_gpu_place(place)) {
    return 1;
  }
P
phlrain 已提交
595

W
wanghuancoder 已提交
596 597
  return -1;
}
P
phlrain 已提交
598

W
wanghuancoder 已提交
599 600 601
void build_variable_scope(const framework::ProgramDesc& pdesc,
                          VariableScope* var_scope) {
  auto& global_block = pdesc.Block(0);
P
phlrain 已提交
602

W
wanghuancoder 已提交
603 604 605
  for (auto& var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
P
phlrain 已提交
606
    }
W
wanghuancoder 已提交
607 608 609 610
    // std::cerr << "var name "  << var->Name() << std::endl;

    if (var_scope->name2id.find(var->Name()) == var_scope->name2id.end()) {
      var_scope->name2id[var->Name()] = var_scope->var_list.size();
P
phlrain 已提交
611 612
    }

W
wanghuancoder 已提交
613 614 615 616 617
    auto v = new Variable();
    // v->GetMutable<LoDTensor>();
    InitializeVariable(v, var->GetType());
    var_scope->var_list.push_back(std::unique_ptr<Variable>(v));
  }
P
phlrain 已提交
618 619
}

W
wanghuancoder 已提交
620 621 622 623 624
void build_op_func_list(const framework::ProgramDesc& pdesc,
                        std::vector<OperatorBase*>& op_list,     // NOLINT
                        std::vector<OpFuncNode>& vec_func_list,  // NOLINT
                        VariableScope* var_scope,
                        const platform::Place& place) {
P
phlrain 已提交
625 626
  auto& global_block = pdesc.Block(0);

W
wanghuancoder 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
  for (auto& op : global_block.AllOps()) {
    // std::cerr << op->Type() << std::endl;
    // bool debug = op->Type() == "softmax_with_cross_entropy_grad";
    bool debug = false;

    // std::cerr << "create op" << std::endl;
    // auto op_base_u = OpRegistry::CreateOp(*op);
    auto& info = OpInfoMap::Instance().Get(op->Type());

    VariableNameMap inputs_1 = op->Inputs();
    VariableNameMap outputs_1 = op->Outputs();
    AttributeMap attrs_1 = op->GetAttrMap();

    if (info.Checker() != nullptr) {
      info.Checker()->Check(&attrs_1);
    }
    auto op_base = info.Creator()(op->Type(), inputs_1, outputs_1, attrs_1);

    auto input_names = op->Inputs();
    auto output_names = op->Outputs();

    OpFuncNode op_func_node;

    // VariableValueMap ins_map;
    // std::map<std::string, std::vector<int> > ins_name2id;
    std::vector<std::vector<Variable*>> ins_value;
    std::vector<std::vector<size_t>> ins_index;
    std::map<std::string, size_t> ins_name_map;
    for (auto& var_name_item : input_names) {
      std::vector<Variable*> input_vars;
      std::vector<size_t> vec_ids;
      input_vars.reserve(var_name_item.second.size());
      for (auto& var_name : var_name_item.second) {
        auto it = var_scope->name2id.find(var_name);
        assert(it != var_scope->name2id.end());
        input_vars.push_back(var_scope->var_list[it->second].get());
        vec_ids.push_back(it->second);
P
phlrain 已提交
664
      }
W
wanghuancoder 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
      ins_value.emplace_back(std::move(input_vars));
      ins_index.emplace_back(std::move(vec_ids));
      ins_name_map[var_name_item.first] = ins_index.size() - 1;
      // ins_map[ var_name_item.first ] = input_vars;
      // ins_name2id[ var_name_item.first ] = vec_ids;
    }
    if (debug) std::cerr << "1" << std::endl;

    // VariableValueMap outs_map;
    // std::map<std::string, std::vector<int> > outs_name2id;
    std::vector<std::vector<Variable*>> outs_value;
    std::vector<std::vector<size_t>> outs_index;
    std::map<std::string, size_t> outs_name_map;
    for (auto& var_name_item : output_names) {
      std::vector<Variable*> output_vars;
      std::vector<size_t> vec_ids;
      output_vars.reserve(var_name_item.second.size());
      for (auto& var_name : var_name_item.second) {
        auto it = var_scope->name2id.find(var_name);
        assert(it != var_scope->name2id.end());
        // std::cerr << it->second << "\t" << var_scope.var_list.size() <<
        // std::endl;
        output_vars.push_back(var_scope->var_list[it->second].get());
        vec_ids.push_back(it->second);
      }
      outs_value.emplace_back(std::move(output_vars));
      outs_index.emplace_back(std::move(vec_ids));
      outs_name_map[var_name_item.first] = outs_index.size() - 1;
      // outs_map[ var_name_item.first ] = output_vars;
      // //std::cerr << ToTypeName(output_vars[0]->Type() ) << std::endl;
      // outs_name2id[ var_name_item.first ] = vec_ids;
    }
P
phlrain 已提交
697

W
wanghuancoder 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
    // op_func_node.input_index = ins_name2id;
    // op_func_node.output_index = outs_name2id;
    op_func_node.input_index = ins_index;
    op_func_node.input_name_map = ins_name_map;
    op_func_node.output_index = outs_index;
    op_func_node.output_name_map = outs_name_map;
    RuntimeContextV2 runtime_context(ins_value, outs_value, ins_name_map,
                                     outs_name_map);
    // runtime_context.inputs.swap( ins_map );
    // runtime_context.outputs.swap(  outs_map );
    // runtime_context.input_values.swap(ins_value);
    // runtime_context.input_name_map = ins_name_map;
    // runtime_context.output_values.swap(outs_value);
    // runtime_context.output_name_map = outs_name_map;
    // std::cerr << "create runtime context" << std::endl;
    RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
    static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
        &infer_shape_ctx);
    // std::cerr << "fin infer shape" << std::endl;
    auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op->Type());
    PADDLE_ENFORCE_NE(
        kernels_iter, all_op_kernels.end(),
        platform::errors::Unavailable(
            "There are no kernels which are registered in the %s operator.",
            op->Type()));
P
phlrain 已提交
724

W
wanghuancoder 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    // std::cerr << "create kernel" << std::endl;
    using OpKernelFunc = std::function<void(const ExecutionContext&)>;
    using OpKernelMap =
        std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
    if (debug) std::cerr << "2" << std::endl;
    OpKernelMap& kernels = kernels_iter->second;
    // auto place = platform::CPUPlace();
    // auto place = platform::CUDAPlace(0);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);
    Scope scope;
    auto exec_ctx =
        ExecutionContextV2(*op_base, scope, *dev_ctx, runtime_context);
    if (debug) std::cerr << "21" << std::endl;
    auto expected_kernel_key =
        dynamic_cast<const framework::OperatorWithKernel*>(op_base)
            ->GetExpectedKernelType(exec_ctx);
    if (debug) std::cerr << "22" << std::endl;
    // std::cerr << "22" << std::endl;

    // add transfer log
    // std::cerr << "in map size " << ins_map.size() << std::endl;
    // VariableValueMap&  ins_map_temp = runtime_context.inputs;
    auto ins_map_temp = runtime_context.input_name_map;
    // std::cerr << "ins map siz" << ins_map_temp.size() << std::endl;
    for (auto& var_name_item : ins_map_temp) {
      // std::cerr << "in name " << var_name_item.first << std::endl;
      // auto& vec_ids = ins_name2id[ var_name_item.first ];
      for (size_t i = 0;
           i < runtime_context.input_values[var_name_item.second].size(); ++i) {
        auto var = runtime_context.input_values[var_name_item.second][i];
        auto tensor_in = static_cast<const Tensor*>(&(var->Get<LoDTensor>()));
        if (!tensor_in->IsInitialized()) {
          continue;
P
phlrain 已提交
759
        }
W
wanghuancoder 已提交
760 761 762 763 764 765 766 767 768 769
        // std::cerr << "i " << i << "\t" << tensor_in->IsInitialized() <<
        // std::endl;
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
                ->GetKernelTypeForVar(var_name_item.first, *tensor_in,
                                      expected_kernel_key);
        if (debug) {
          std::cerr << "var name " << var_name_item.first << std::endl;
          std::cerr << expected_kernel_key.place_ << "\t"
                    << kernel_type_for_var.place_ << std::endl;
P
phlrain 已提交
770
        }
W
wanghuancoder 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        if (!platform::is_same_place(kernel_type_for_var.place_,
                                     expected_kernel_key.place_)) {
          if (debug) std::cerr << "add data transfer" << std::endl;
          // need trans place
          // add var in scope
          // add copy op
          std::string new_var_name =
              "temp_1" + std::to_string(var_scope->var_list.size() + 1);
          auto v = new Variable();
          v->GetMutable<LoDTensor>();
          var_scope->name2id[new_var_name] = var_scope->var_list.size();
          var_scope->var_list.push_back(std::unique_ptr<Variable>(v));

          VariableNameMap copy_in_map;
          // std::cerr << "ints name is " << input_names[var_name_item.first][i]
          //     << std::endl;
          copy_in_map["X"] = {input_names[var_name_item.first][i]};
          VariableNameMap copy_out_map;
          copy_out_map["Out"] = {new_var_name};
          AttributeMap attr_map;
          attr_map["dst_place_type"] = convert(place);

          // std::map< std::string, std::vector<int> > copy_ins_name2id;
          // copy_ins_name2id["X"] = ins_name2id[ var_name_item.first ];
          // std::map< std::string, std::vector<int> > copy_out_name2id;
          // copy_out_name2id["Out"] = { var_scope->name2id[new_var_name]};

          // vec_ids[i] = var_scope->name2id[new_var_name];
          // update out runtime_context
          op_func_node
              .input_index[op_func_node.input_name_map[var_name_item.first]]
                          [i] = var_scope->name2id[new_var_name];

          // VariableValueMap copy_ins_value_map;
          // copy_ins_value_map["X"] = { var };
          // VariableValueMap copy_outs_value_map;
          // copy_outs_value_map["Out"] = { v };

          auto& copy_info = OpInfoMap::Instance().Get("memcpy");
          auto copy_op = copy_info.Creator()("memcpy", copy_in_map,
                                             copy_out_map, attr_map);
          if (debug) std::cerr << "create memcpy" << std::endl;
          OpFuncNode copy_op_func_node;
          // copy_op_func_node.input_index = copy_ins_name2id;
          // copy_op_func_node.output_index = copy_out_name2id;
          copy_op_func_node.input_index.push_back(
              ins_index[ins_name_map[var_name_item.first]]);
          copy_op_func_node.input_name_map["X"] = 0;
          copy_op_func_node.output_index.push_back(
              {var_scope->name2id[new_var_name]});
          copy_op_func_node.output_name_map["Out"] = 0;
          std::vector<std::vector<Variable*>> in_values;
          std::vector<std::vector<Variable*>> out_values;
          in_values.push_back({var});
          out_values.push_back({v});
          RuntimeContextV2 copy_runtime_context(
              in_values, out_values, copy_op_func_node.input_name_map,
              copy_op_func_node.output_name_map);
          // copy_runtime_context.input_values.push_back({var});
          // copy_runtime_context.input_name_map["X"] = 0;
          // copy_runtime_context.output_values.push_back({v});
          // copy_runtime_context.output_name_map["Out"] = 0;
          // copy_runtime_context.inputs.swap( copy_ins_value_map );
          // copy_runtime_context.outputs.swap(  copy_outs_value_map );
          // std::cerr << "create runtime context" << std::endl;
          RuntimeInferShapeContext copy_infer_shape_ctx(*copy_op,
                                                        copy_runtime_context);
          if (debug) std::cerr << "before infer shape" << std::endl;
          static_cast<const framework::OperatorWithKernel*>(copy_op)
              ->InferShape(&copy_infer_shape_ctx);
          if (debug) std::cerr << "infer shape" << std::endl;
          // std::cerr << "fin infer shape" << std::endl;
          auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
          auto kernels_iter = all_op_kernels.find("memcpy");
          PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(),
                            platform::errors::Unavailable(
                                "There are no kernels which are registered in "
                                "the memcpy operator."));

          // std::cerr << "create kernel" << std::endl;
          using OpKernelFunc = std::function<void(const ExecutionContext&)>;
          using OpKernelMap = std::unordered_map<OpKernelType, OpKernelFunc,
                                                 OpKernelType::Hash>;

          OpKernelMap& kernels = kernels_iter->second;
          // auto place = platform::CPUPlace();
          // auto place = platform::CUDAPlace(0);

          platform::DeviceContextPool& pool =
              platform::DeviceContextPool::Instance();
          auto* dev_ctx = pool.Get(place);
          Scope scope;
          auto copy_exec_ctx = ExecutionContextV2(*copy_op, scope, *dev_ctx,
                                                  copy_runtime_context);
          if (debug) std::cerr << "21" << std::endl;
          auto expected_kernel_key =
              dynamic_cast<const framework::OperatorWithKernel*>(copy_op)
                  ->GetExpectedKernelType(copy_exec_ctx);
          if (debug) std::cerr << "22" << std::endl;
          // std::cerr << "22" << std::endl;
          auto kernel_iter = kernels.find(expected_kernel_key);
          copy_op_func_node.kernel_func_ = OpKernelFunc(kernel_iter->second);
          copy_op_func_node.kernel_func_(copy_exec_ctx);
          if (debug) std::cerr << "run exe ctx" << std::endl;

          op_list.push_back(copy_op);
          vec_func_list.push_back(copy_op_func_node);

          runtime_context.input_values[var_name_item.second][i] = v;
P
phlrain 已提交
880
        }
W
wanghuancoder 已提交
881
      }
P
phlrain 已提交
882 883
    }

W
wanghuancoder 已提交
884
    op_list.push_back(op_base);
P
phlrain 已提交
885

W
wanghuancoder 已提交
886
    auto kernel_iter = kernels.find(expected_kernel_key);
P
phlrain 已提交
887

W
wanghuancoder 已提交
888 889 890 891 892 893 894 895
    if (debug) std::cerr << "3" << std::endl;
    op_func_node.kernel_func_ = OpKernelFunc(kernel_iter->second);
    if (debug) std::cerr << "3-1" << std::endl;
    op_func_node.kernel_func_(exec_ctx);
    vec_func_list.push_back(op_func_node);
    if (debug) std::cerr << "5" << std::endl;
  }
}
P
phlrain 已提交
896

W
wanghuancoder 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
void exec_op_func_list(const std::vector<OpFuncNode>& vec_func_list,
                       std::vector<OperatorBase*>& op_list,  // NOLINT
                       const VariableScope& var_scope,
                       const platform::Place& place) {
  for (size_t i = 0; i < vec_func_list.size(); ++i) {
    auto& func_node = vec_func_list[i];
    auto op_base = op_list[i];
    // build runtime cost
    // VariableValueMap ins_map;
    std::vector<std::vector<Variable*>> ins_map;
    for (auto& var_name_item : func_node.input_name_map) {
      std::vector<Variable*> input_vars;

      input_vars.reserve(func_node.input_index[var_name_item.second].size());
      for (auto& id : func_node.input_index[var_name_item.second]) {
        // std::cerr << var_name_item.first << "\t " << id << std::endl;
        input_vars.emplace_back(var_scope.var_list[id].get());
      }
      // ins_map.emplace( var_name_item.first, std::move(input_vars) );
      ins_map.emplace_back(std::move(input_vars));
    }

    // VariableValueMap outs_map;
    std::vector<std::vector<Variable*>> outs_map;
    for (auto& var_name_item : func_node.output_name_map) {
      std::vector<Variable*> out_vars;
P
phlrain 已提交
923

W
wanghuancoder 已提交
924 925 926 927 928 929 930
      out_vars.reserve(func_node.output_index[var_name_item.second].size());
      for (auto& id : func_node.output_index[var_name_item.second]) {
        // std::cerr << var_name_item.first << "\t " << id << std::endl;
        out_vars.emplace_back(var_scope.var_list[id].get());
      }
      // outs_map.emplace( var_name_item.first, std::move( out_vars ) );
      outs_map.emplace_back(std::move(out_vars));
P
phlrain 已提交
931
    }
W
wanghuancoder 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

    RuntimeContextV2 runtime_context(
        ins_map, outs_map, func_node.input_name_map, func_node.output_name_map);
    // runtime_context.inputs.swap( ins_map );
    // runtime_context.outputs.swap(  outs_map );
    // runtime_context.input_values.swap(ins_map);
    // runtime_context.output_values.swap(outs_map);
    // runtime_context.input_name_map = func_node.input_name_map;
    // runtime_context.output_name_map = func_node.output_name_map;

    RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);

    // dynamic_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
    // &infer_shape_ctx );
    // RuntimeInferShapeContext infer_shape_ctx(*op_base, runtime_context);
    static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
        &infer_shape_ctx);

    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    // auto place = platform::CPUPlace();
    // auto place = platform::CUDAPlace(0);
    auto* dev_ctx = pool.Get(place);
    Scope scope;

    auto exec_context =
        ExecutionContextV2(*op_base, scope, *dev_ctx, runtime_context);

    func_node.kernel_func_(exec_context);
  }
P
phlrain 已提交
961 962
}

W
wanghuancoder 已提交
963 964 965 966 967
class InterpreterCore {
 public:
  InterpreterCore(const platform::Place& place, const ProgramDesc& prog,
                  const ProgramDesc& startup_prog)
      : place_(place), prog_(prog) {
P
phlrain 已提交
968 969 970 971
    paddle::framework::InitDevices();

    is_build = false;

W
wanghuancoder 已提交
972
    paddle::framework::build_variable_scope(startup_prog, &global_scope);
P
phlrain 已提交
973 974

    std::vector<paddle::framework::OpFuncNode> vec_func_list;
W
wanghuancoder 已提交
975 976 977 978 979 980 981 982 983 984 985 986
    std::vector<paddle::framework::OperatorBase*> op_list;
    paddle::framework::build_op_func_list(startup_prog, op_list, vec_func_list,
                                          &global_scope, place_);
  }
  void run(const std::vector<std::string> vec_name,
           const std::vector<framework::Tensor>& vec_tensor,
           const std::vector<std::string>& vec_fetch_name,
           std::vector<framework::Tensor>& vec_out) {  // NOLINT
    // std::cerr << "run" << std::endl;
    // set static data
    if (is_build == false) {
      paddle::framework::build_variable_scope(prog_, &global_scope);
P
phlrain 已提交
987
    }
W
wanghuancoder 已提交
988 989 990 991 992 993 994 995 996 997 998 999

    for (size_t i = 0; i < vec_name.size(); ++i) {
      auto it = global_scope.name2id.find(vec_name[i]);
      // std::cerr << "find " << (it != global_scope.name2id.end()) <<
      // std::endl;
      assert(it != global_scope.name2id.end());

      auto feed_tensor =
          global_scope.var_list[it->second]->GetMutable<framework::LoDTensor>();
      // std::cerr << " get tensor" << std::endl;
      feed_tensor->ShareDataWith(vec_tensor[i]);
      // std::cerr << "share buffer with" << std::endl;
P
phlrain 已提交
1000
    }
W
wanghuancoder 已提交
1001 1002 1003 1004

    if (is_build == false) {
      paddle::framework::build_op_func_list(prog_, op_list, vec_func_list,
                                            &global_scope, place_);
P
phlrain 已提交
1005
      is_build = true;
W
wanghuancoder 已提交
1006 1007 1008
    } else {
      paddle::framework::exec_op_func_list(vec_func_list, op_list, global_scope,
                                           place_);
P
phlrain 已提交
1009 1010
    }

W
wanghuancoder 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    for (size_t i = 0; i < vec_fetch_name.size(); ++i) {
      auto it = global_scope.name2id.find(vec_fetch_name[i]);
      assert(it != global_scope.name2id.end());

      auto fetch_tensor =
          global_scope.var_list[it->second]->GetMutable<framework::LoDTensor>();

      // std::cerr << "out  "  << fetch_tensor->data<float>()[0] << std::endl;
      if (platform::is_gpu_place(fetch_tensor->place())) {
        // std::cerr << "fetch gpu" << std::endl;
        Tensor out;
        platform::DeviceContextPool& pool =
            platform::DeviceContextPool::Instance();
        auto* dev_ctx = pool.Get(place_);
        dev_ctx->Wait();
        TensorCopySync(*fetch_tensor, platform::CPUPlace(), &out);
        dev_ctx->Wait();
        // std::cerr << "out  " << out << std::endl;
        vec_out.push_back(out);
      } else {
        // std::cerr << "out  " << *fetch_tensor << std::endl;
      }
P
phlrain 已提交
1033 1034
    }
  }
W
wanghuancoder 已提交
1035 1036

 private:
P
phlrain 已提交
1037 1038 1039 1040
  const platform::Place& place_;
  const ProgramDesc& prog_;
  paddle::framework::VariableScope global_scope;
  std::vector<paddle::framework::OpFuncNode> vec_func_list;
W
wanghuancoder 已提交
1041
  std::vector<paddle::framework::OperatorBase*> op_list;
P
phlrain 已提交
1042 1043 1044

  bool is_build;
};
W
wanghuancoder 已提交
1045 1046
}  // namespace framework
}  // namespace paddle