optimizer.py 19.8 KB
Newer Older
1
from collections import defaultdict
Q
Qiao Longfei 已提交
2

3 4 5 6 7 8
import framework
from backward import append_backward_ops
from framework import unique_name
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
9

10
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
11 12 13 14 15 16


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
17 18
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
19 20
    """

D
dzhwinter 已提交
21
    def __init__(self, global_step=None, regularization=None):
22
        self._global_step = global_step
D
dzhwinter 已提交
23
        self.regularization = regularization
24 25 26 27 28
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
29
        self.helper = None
Q
Qiao Longfei 已提交
30 31 32 33 34 35

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

36 37 38 39 40 41 42 43 44 45 46 47 48
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
        param_lr_shape = [1]
        param_lr_var = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=param_lr_shape,
            lod_level=1,
            persistable=True)
        param_lr = param_lr * self._learning_rate
        self.helper.set_variable_initializer(
49
            var=param_lr_var, initializer=Constant(param_lr))
50
        return param_lr_var
51 52 53 54 55 56 57

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
58
        """
59 60
        pass

61 62 63 64 65 66 67 68 69 70 71 72 73
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
74
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
75 76 77 78 79 80 81 82 83 84 85
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
86
            raise Exception("Accumulator {} already exists for parameter {}".
87
                            format(name, param.name))
Q
Qiao Longfei 已提交
88 89 90 91 92

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
F
fengjiayi 已提交
93
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
94 95 96
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
97
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
98
        self._accumulators[name][param.name] = var
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
136 137 138
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
139
                                 startup_program=None):
Q
Qiao Longfei 已提交
140 141 142 143 144 145 146
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
147 148 149 150
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
151
          :param startup_program: 
Q
Qiao Longfei 已提交
152
        """
153 154 155 156 157
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
158
        # for parameters and extend _finish_update method to add custom ops.
159 160

        # Create any accumulators
Q
Qiao Longfei 已提交
161 162
        program = loss.block.program
        self.helper = LayerHelper(
163 164 165
            self.__class__.__name__,
            main_program=program,
            startup_program=startup_program)
166 167 168
        self._create_accumulators(loss.block,
                                  [p[0] for p in parameters_and_grads])

Q
Qiao Longfei 已提交
169 170
        optimize_ops = []
        for param_and_grad in parameters_and_grads:
Q
Qiao Longfei 已提交
171 172
            if param_and_grad[0].trainable is True and param_and_grad[
                    1] is not None:
Q
Qiao Longfei 已提交
173 174 175
                optimize_op = self._append_optimize_op(loss.block,
                                                       param_and_grad)
                optimize_ops.append(optimize_op)
176

177 178 179 180 181 182 183 184 185 186
        # Returned list of ops can include more ops in addition
        # to optimization ops
        return_ops = optimize_ops

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        finish_ops = self._finish_update(loss.block)
        if finish_ops is not None:
            return_ops += finish_ops

187 188
        if self._global_step is not None:
            return_ops.append(self._increment_global_step(loss.block))
189
        return return_ops
Q
Qiao Longfei 已提交
190

Q
Qiao Longfei 已提交
191 192
    def minimize(self,
                 loss,
193
                 startup_program=None,
Q
Qiao Longfei 已提交
194 195
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
196 197
        """Add operations to minimize `loss` by updating `parameter_list`.

198
        This method combines interface `append_backward_ops()` and
Q
Qiao Longfei 已提交
199 200
        `create_optimization_pass()` into one.
        """
201
        params_grads = append_backward_ops(loss, parameter_list, no_grad_set)
F
fengjiayi 已提交
202
        # Add regularization if any
D
dzhwinter 已提交
203 204
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Q
Qiao Longfei 已提交
205
        optimize_ops = self.create_optimization_pass(params_grads, loss,
206
                                                     startup_program)
Q
Qiao Longfei 已提交
207 208 209 210 211 212 213
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
214
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
215
        assert learning_rate is not None
D
dzhwinter 已提交
216
        super(SGDOptimizer, self).__init__(**kwargs)
Q
Qiao Longfei 已提交
217 218 219
        self.type = "sgd"
        self._learning_rate = learning_rate

220 221
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
222

Q
Qiao Longfei 已提交
223 224 225 226 227 228
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
229
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
230
            },
231
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
232 233

        return sgd_op
234 235 236 237 238 239 240


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
241
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
242 243
        assert learning_rate is not None
        assert momentum is not None
D
dzhwinter 已提交
244
        super(MomentumOptimizer, self).__init__(**kwargs)
245 246 247
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
248
        self._use_nesterov = bool(use_nesterov)
249 250 251 252 253

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
254
            self._add_accumulator(self._velocity_acc_str, p)
255 256 257 258 259 260 261 262 263 264 265 266 267

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
268
                "LearningRate": self._create_param_lr(param_and_grad)
269 270 271 272 273
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
274
            attrs={"mu": self._momentum,
275
                   "use_nesterov": self._use_nesterov})
276 277

        return momentum_op
278 279 280 281 282 283 284


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
285
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
286 287
        assert learning_rate is not None
        assert epsilon is not None
D
dzhwinter 已提交
288
        super(AdagradOptimizer, self).__init__(**kwargs)
289 290 291 292 293 294 295 296
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
297
            self._add_accumulator(self._moment_acc_str, p)
298 299 300 301 302 303 304

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

305
        # Create the adagrad optimizer op
306 307 308 309 310 311
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
312
                "LearningRate": self._create_param_lr(param_and_grad)
313 314 315 316 317 318
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
319 320 321 322 323 324 325 326 327 328 329 330


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
331
                 epsilon=1e-8,
D
dzhwinter 已提交
332
                 **kwargs):
333 334 335 336
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
337
        super(AdamOptimizer, self).__init__(**kwargs)
338 339 340 341 342 343 344 345 346
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
347
        main_block = block.program.global_block()
348 349
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
350 351 352 353 354 355 356
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
357
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
358 359 360 361 362 363 364 365 366

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
367
            self._beta2_pow_acc, initializer=Constant(self._beta2))
368 369 370

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
371 372
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
373 374 375 376 377 378 379 380

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
381
        # create the adam optimize op
382 383 384 385 386
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
387
                "LearningRate": self._create_param_lr(param_and_grad),
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
410 411
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
412 413 414 415 416
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
417
        scale_beta2 = main_block.append_op(
418 419 420 421 422 423
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
424 425 426 427 428 429 430 431 432 433 434 435


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
436
                 epsilon=1e-8,
D
dzhwinter 已提交
437
                 **kwargs):
438 439 440 441
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
442
        super(AdamaxOptimizer, self).__init__(**kwargs)
443 444 445 446 447 448 449 450 451
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
452 453 454 455 456 457 458
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
459
            self._beta1_pow_acc, initializer=Constant(self._beta1))
460 461 462

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
463 464
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
465 466 467 468 469 470 471 472 473 474 475 476 477

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
478
                "LearningRate": self._create_param_lr(param_and_grad),
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
500 501
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
502 503 504 505 506 507
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
508 509 510 511 512 513 514


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
515
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
516 517 518 519
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

D
dzhwinter 已提交
520
        super(DecayedAdagradOptimizer, self).__init__(**kwargs)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        self.type = "decayed_adagrad"
        self._learning_rate = learning_rate
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer