layers.py 150.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Z
zhangjinchao01 已提交
17 18 19 20 21 22 23 24

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
    ReluActivation, IdentityActivation, SoftmaxActivation
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
25

Z
zhangjinchao01 已提交
26 27 28 29 30 31
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
__all__ = [
    "full_matrix_projection",
    "AggregateLevel",
    "ExpandLevel",
    "identity_projection",
    "dotmul_projection",
    "dotmul_operator",
    "repeat_layer",
    "table_projection",
    "mixed_layer",
    "data_layer",
    "embedding_layer",
    "fc_layer",
    "grumemory",
    "pooling_layer",
    "lstmemory",
    "last_seq",
    "first_seq",
    "cos_sim",
    "hsigmoid",
    "conv_projection",
    "regression_cost",
    'classification_cost',
    "LayerOutput",
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
68
    'scaling_projection',
Q
qijun 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
94
    'warp_ctc_layer',
Q
qijun 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'print_layer',
    'spp_layer',
]
Z
zhangjinchao01 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


class LayerType(object):
    """
    Layer type enumerations.
    """

    DATA = "data"
    MIXED_LAYER = "mixed"
    LSTMEMORY = "lstmemory"
    GRUMEMORY = "gated_recurrent"
    SEQUENCE_LAST_INSTANCE = "seqlastins"
    SEQUENCE_FIRST_INSTANCE = "seqfirstins"
    POOLING_MAX = "max"
    POOLING_AVG = 'average'
    FC_LAYER = "fc"
    COST = 'cost'
128 129
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
130 131
    HSIGMOID = 'hsigmoid'
    CONV_LAYER = "conv"
132
    CONVTRANS_LAYER = "convt"
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    POOL_LAYER = "pool"
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
148
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
149 150 151
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
H
Haonan 已提交
152
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
153
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
154 155 156 157 158 159 160 161 162 163 164

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
165
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
166
    BLOCK_EXPAND = "blockexpand"
167
    MAXOUT = "maxout"
Q
qijun 已提交
168
    SPP_LAYER = "spp"
Z
zhangjinchao01 已提交
169

170 171
    PRINT_LAYER = "print"

Z
zhangjinchao01 已提交
172
    CTC_LAYER = "ctc"
173
    WARP_CTC_LAYER = "warp_ctc"
Z
zhangjinchao01 已提交
174 175
    CRF_LAYER = "crf"
    CRF_DECODING_LAYER = "crf_decoding"
176
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
177 178 179 180 181 182 183 184

    RANK_COST = "rank-cost"
    LAMBDA_COST = "lambda_cost"
    HUBER = "huber"
    CROSS_ENTROPY = "multi-class-cross-entropy"
    CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm"
    SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy"
    MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy"
X
xuwei06 已提交
185
    SUM_COST = "sum_cost"
Z
zhangjinchao01 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
    EACH_TIMESTEP = 'non-seq'
    EACH_SEQUENCE = 'seq'


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
231
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
232 233
    """

Q
qijun 已提交
234 235 236 237 238 239 240 241 242
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
243
                 reverse=None):
Z
zhangjinchao01 已提交
244 245
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
246
        assert size is not None
Z
zhangjinchao01 已提交
247 248 249
        assert LayerType.is_layer_type(layer_type)
        self.name = name
        self.layer_type = layer_type
250 251
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
252 253 254 255 256 257 258 259
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
260
        self.reverse = reverse
Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"


ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
277
DEVICE = 'device'
Z
zhangjinchao01 已提交
278 279 280


def layer_support(*attrs):
281
    attrs_list = list(attrs)
282
    attrs_list.append(DEVICE)
Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
287
            for attr in attrs_list:
Z
zhangjinchao01 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
343 344
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
345 346 347 348
    proj.origin = input
    return proj


349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
379 380
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
381 382 383 384
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
424 425
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    proj.origin = input
    return proj


def identity_projection(input, offset=None):
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
461
    :type input: LayerOutput
Z
zhangjinchao01 已提交
462 463
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
464
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
465 466 467 468 469 470
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
Q
qijun 已提交
471 472
        proj = IdentityOffsetProjection(
            input_layer_name=input.name, offset=offset)
Z
zhangjinchao01 已提交
473 474 475 476
        proj.origin = input
    return proj


X
xuwei06 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
499
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
500 501 502 503
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
504
@wrap_param_attr_default()
505
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
506
    """
507
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

521 522 523 524 525 526 527
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
528 529
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
530
    proj.origin = input
531
    return proj
Z
zhangjinchao01 已提交
532

533 534

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
535 536
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
537

Z
zhangjinchao01 已提交
538
    .. math::
539 540
       out.row[i] += scale * (x.row[i] .* y.row[i])

Z
zhangjinchao01 已提交
541 542
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
543

Z
zhangjinchao01 已提交
544
    The example usage is:
545

Z
zhangjinchao01 已提交
546
    .. code-block:: python
547 548 549

       op = dotmul_operator(x=layer1, y=layer2, scale=0.5)

550 551 552 553
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
554 555
    :param scale: config scalar, default value is one.
    :type scale: float
556 557
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
558
    """
559 560 561
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
562
    a = kwargs.get('x', a)  # For Backward capacity.
563 564 565 566 567 568
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
569
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
570
    op.origin = [a, b]
571
    return op
Z
zhangjinchao01 已提交
572

573

Z
zhangjinchao01 已提交
574
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
575 576 577
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
614 615 616 617 618 619
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
633
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
650 651 652 653 654 655 656
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
657 658 659 660 661
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

662
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
663 664 665 666 667 668 669 670
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
671
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
672
            self.inputs.append(other)
673 674 675 676
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
677 678 679 680 681 682 683 684 685 686 687
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

    def __exit__(self, *args, **kwargs):
        del args, kwargs  # unused parameter to suppress warning
        assert len(self.inputs) != 0
688
        ml = MixedLayer(
Z
zhangjinchao01 已提交
689 690 691 692 693
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
694
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
695 696 697
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
Z
zhangjinchao01 已提交
698 699 700 701 702 703


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
704 705 706 707 708
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
753 754 755 756 757 758
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
759
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
def data_layer(name, size, layer_attr=None):
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

        data = data_layer(name="input",
                          size=1000)

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
785
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
786 787
    :rtype: LayerOutput
    """
Q
qijun 已提交
788 789 790 791 792
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
815
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
816 817
    :rtype: LayerOutput
    """
Q
qijun 已提交
818 819 820 821 822 823
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
824 825 826 827 828 829 830 831 832
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
833 834 835 836 837 838 839
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
840 841 842 843 844 845 846 847 848 849 850 851
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
852
    which is equal to:
Z
zhangjinchao01 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
875
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
876 877 878 879
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
880
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
881 882
        param_attr = [param_attr]
    else:
883
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
884 885 886 887
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

888
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
889 890

    Layer(
Q
qijun 已提交
891 892 893
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
894 895 896 897 898
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
899 900 901
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
902

903

904 905 906 907
@wrap_name_default("print")
def print_layer(input, name=None):
    """
    Print the output value of input layers. This layer is useful for debugging.
908 909 910 911 912

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
913
    :return: LayerOutput
914
    """
915 916 917 918 919
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
920 921 922 923

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
924
        inputs=[l.name for l in input], )
925
    # this layer don't return anything, can not be input of other layer.
926

Z
zhangjinchao01 已提交
927 928 929 930 931

@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
932 933 934 935
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
Z
zhangjinchao01 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948
                  agg_level=AggregateLevel.EACH_TIMESTEP,
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
                                agg_level=AggregateLevel.EACH_SEQUENCE)

C
caoying03 已提交
949 950
    :param agg_level: AggregateLevel.EACH_TIMESTEP or
                      AggregateLevel.EACH_SEQUENCE
Z
zhangjinchao01 已提交
951 952 953 954 955 956 957 958 959 960 961 962
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
963
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
964 965 966
    :rtype: LayerType
    """
    extra_dict = dict()
967
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
968 969
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
970 971 972 973
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
974 975 976 977 978 979 980 981
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
Q
qijun 已提交
982
        **extra_dict)
Z
zhangjinchao01 已提交
983

Q
qijun 已提交
984 985
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
986

Q
qijun 已提交
987

Z
zhangjinchao01 已提交
988 989
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
990
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
991 992 993
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
994 995 996 997 998 999 1000 1001 1002
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1003 1004 1005 1006 1007 1008 1009 1010
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1011
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1012

L
luotao02 已提交
1013
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1014

L
luotao02 已提交
1015
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1016

L
luotao02 已提交
1017
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1018

L
luotao02 已提交
1019
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1020 1021


C
caoying03 已提交
1022
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1023
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1024 1025 1026 1027
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1028

C
caoying03 已提交
1029
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1030 1031
    to config a simple plain lstm layer.

C
caoying03 已提交
1032 1033 1034 1035
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1059
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1060 1061 1062 1063 1064 1065
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
Z
zhangjinchao01 已提交
1076

Q
qijun 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1087

Q
qijun 已提交
1088 1089 1090 1091 1092
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1093

Z
zhangjinchao01 已提交
1094 1095 1096

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1097
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1098 1099 1100
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1101 1102 1103 1104 1105 1106 1107 1108
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1130 1131
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1132 1133 1134 1135 1136

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1137 1138 1139
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1140 1141 1142 1143 1144

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1145
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1146
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1147 1148 1149
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1150

C
caoying03 已提交
1151 1152 1153
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1165
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1181 1182 1183
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1184
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1185 1186 1187 1188
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1189 1190 1191 1192 1193 1194 1195 1196 1197
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
Z
zhangjinchao01 已提交
1198

Q
qijun 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1208

Q
qijun 已提交
1209 1210 1211 1212 1213
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1214

Z
zhangjinchao01 已提交
1215 1216 1217

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1218 1219 1220
def last_seq(input,
             name=None,
             agg_level=AggregateLevel.EACH_TIMESTEP,
Z
zhangjinchao01 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1232
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1233 1234
    :rtype: LayerOutput
    """
1235 1236 1237 1238 1239 1240
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

Z
zhangjinchao01 已提交
1241 1242 1243 1244 1245
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
Q
qijun 已提交
1246 1247 1248 1249 1250 1251
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1252 1253 1254 1255


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1256 1257 1258
def first_seq(input,
              name=None,
              agg_level=AggregateLevel.EACH_TIMESTEP,
Z
zhangjinchao01 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1270
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1271 1272
    :rtype: LayerOutput
    """
1273 1274 1275 1276 1277 1278 1279

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

Z
zhangjinchao01 已提交
1280 1281 1282 1283 1284
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
Q
qijun 已提交
1285 1286 1287 1288 1289 1290
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1291 1292 1293 1294 1295 1296


class ExpandLevel(object):
    FROM_TIMESTEP = AggregateLevel.EACH_TIMESTEP
    FROM_SEQUENCE = AggregateLevel.EACH_SEQUENCE

1297

Z
zhangjinchao01 已提交
1298 1299
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1300 1301
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
                 name=None,
                 bias_attr=False,
                 expand_level=ExpandLevel.FROM_TIMESTEP,
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
                             expand_level=ExpandLevel.FROM_TIMESTEP)

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1331
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1341 1342 1343 1344 1345 1346
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1347 1348


X
xuwei06 已提交
1349 1350
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1351
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
X
xuwei06 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    """
    A layer for repeating the input for num_repeats times. This is equivalent
    to apply concat_layer() with num_repeats same input.

    .. math::
       y  = [x, x, \cdots, x]

    The example usage is:

    .. code-block:: python

       expand = repeat_layer(layer, 4)

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
        num_filters=num_repeats,
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1382 1383 1384 1385 1386 1387 1388
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
        parents=[input])

X
xuwei06 已提交
1389

Z
zhangjinchao01 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1418
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1419 1420
    :rtype: LayerOutput
    """
1421
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1422
    assert len(input) == 2
1423 1424 1425 1426 1427 1428 1429
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1430 1431 1432 1433
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1434 1435 1436 1437 1438 1439
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1440 1441


L
liaogang 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1458
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1459

L
liaogang 已提交
1460
    :param   input:        A input layer.
L
liaogang 已提交
1461
    :type    input:        LayerOutput.
L
liaogang 已提交
1462
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1463
    :type    out_size_x:   int|None
L
liaogang 已提交
1464
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1465
    :type    out_size_y:   int|None
L
liaogang 已提交
1466
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1467
    :type    name:         None|basestring
L
liaogang 已提交
1468
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1469 1470 1471 1472 1473 1474 1475
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1476
    assert input.num_filters is not None
L
liaogang 已提交
1477
    num_channels = input.num_filters
Q
qijun 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
                num_channels=num_channels)),
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1495

Z
zhangjinchao01 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1523
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1524 1525
    :rtype: LayerOutput
    """
1526 1527 1528
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1529 1530 1531
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1532
        inputs=[weight.name, input.name],
Q
qijun 已提交
1533 1534 1535
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1536 1537 1538 1539 1540 1541


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1542
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1543 1544

    .. math::
1545
       y  = w x
Z
zhangjinchao01 已提交
1546

1547 1548 1549 1550 1551
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1567
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1568 1569
    :rtype: LayerOutput
    """
1570 1571 1572
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1573 1574 1575 1576
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
1577 1578 1579
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
    A layer for transposition.

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1605
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1606 1607 1608 1609 1610 1611
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
1612 1613 1614
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623


@wrap_name_default()
@layer_support()
def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1624
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1625 1626 1627 1628 1629
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
1630

1631 1632
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1646
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1647 1648
    :rtype: LayerOutput
    """
1649
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1650 1651 1652 1653 1654 1655
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1656
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1657
    else:
1658 1659
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
1660 1661 1662 1663 1664 1665
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1666
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
1667
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
1668

1669

Z
zhangjinchao01 已提交
1670 1671
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
1672
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
1673
@layer_support()
Q
qijun 已提交
1674 1675 1676 1677 1678 1679 1680
def hsigmoid(input,
             label,
             num_classes,
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
                        label=data_layer,
                        num_classes=3)

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
    :type num_classes: int
L
luotao02 已提交
1702 1703
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
1704 1705 1706 1707 1708
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1709
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1710 1711 1712 1713
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1714 1715 1716 1717 1718 1719 1720 1721 1722
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1723 1724 1725 1726 1727
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

    ipts_for_layer = []
    parents = []
1728
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
1729
        assert isinstance(each_input, LayerOutput)
1730
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
1731 1732 1733 1734
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
1735
    l = Layer(
Z
zhangjinchao01 已提交
1736 1737 1738 1739 1740
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
1741 1742 1743
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
1744

1745

Z
zhangjinchao01 已提交
1746 1747 1748 1749 1750
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
1767
                   trans=False):
Z
zhangjinchao01 已提交
1768 1769 1770 1771 1772 1773 1774
    """
    Convolution layer for image. Paddle only support square input currently and
    thus input image's width equals height.

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
1775 1776

    Convolution Transpose (deconv) layer for image. Paddle only support square
1777 1778
    input currently and thus input image's width equals height.

X
xuwei06 已提交
1779
    The details of convolution transpose layer,
1780 1781 1782
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
1783 1784 1785 1786
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
1787 1788 1789
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
1790
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
1791 1792
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
1793 1794 1795 1796 1797

    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
1798 1799 1800
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
1801 1802 1803
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
1804
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
1805 1806 1807 1808 1809
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
1810 1811 1812
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
1813 1814
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
1815 1816 1817
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
1832 1833
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
D
dangqingqing 已提交
1834
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1835 1836 1837 1838 1839
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
1840

Z
zhangjinchao01 已提交
1841
    if filter_size_y is None:
1842 1843 1844 1845 1846 1847
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
1848
    if stride_y is None:
1849 1850 1851 1852 1853 1854
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
1855
    if padding_y is None:
1856 1857 1858 1859 1860 1861 1862 1863
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
1864
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
1865 1866 1867 1868
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
Q
qijun 已提交
1869

1870
    lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
1871

X
xuwei06 已提交
1872
    l = Layer(
Z
zhangjinchao01 已提交
1873
        name=name,
Q
qijun 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
1886 1887 1888 1889
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
1890
        type=lt,
Q
qijun 已提交
1891 1892 1893 1894 1895 1896 1897 1898
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
1899 1900 1901 1902


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
                   padding_y=None,
1914
                   img_width=None):
Z
zhangjinchao01 已提交
1915 1916 1917 1918 1919 1920 1921
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

1922
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
1923
    :type padding: int
1924 1925
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
1926 1927 1928 1929
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
1930
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
1931
    :type pool_size: int
1932 1933
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
1934 1935
    :param num_channels: number of input channel.
    :type num_channels: int
1936
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
1937 1938
                      MaxPooling.
    :type pool_type: BasePoolingType
1939
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
1940
    :type stride: int
1941 1942
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
1943 1944
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
1945 1946 1947
    :param img_width: the width of input feature map. If it is None, the input feature
                      map should be square.
    :type img_width: int|None
D
dangqingqing 已提交
1948 1949
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

1960 1961 1962 1963 1964 1965 1966 1967
    type_name = pool_type.name + '-projection' \
      if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
      else pool_type.name

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
1968
    l = Layer(
Z
zhangjinchao01 已提交
1969 1970
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    img_width=img_width))
        ],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
1993 1994


Q
qijun 已提交
1995 1996
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
1997 1998 1999 2000 2001 2002 2003
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              img_width=None,
              layer_attr=None):
Q
qijun 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param img_width: the width of input feature map. If it is None, the input feature
                      map should be square.
    :type img_width: int|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2040
    l = Layer(
Q
qijun 已提交
2041 2042
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
                pyramid_height=pyramid_height,
                img_width=img_width)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2061 2062 2063 2064
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2065
    l = Layer(
Q
qijun 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2085 2086 2087 2088


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2089 2090 2091 2092 2093 2094
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2095
                      layer_attr=None):
Z
zhangjinchao01 已提交
2096
    """
2097
    Response normalization across feature maps.
D
dangqingqing 已提交
2098 2099
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2100 2101

    :param name: layer name.
D
dangqingqing 已提交
2102
    :type name: None|basestring
Z
zhangjinchao01 已提交
2103 2104
    :param input: layer's input.
    :type input: LayerOutput
2105
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2106
    :type size: int
D
dangqingqing 已提交
2107
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2108
    :type scale: float
D
dangqingqing 已提交
2109
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2110 2111 2112 2113 2114
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2115
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2116 2117 2118
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2119
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2120 2121 2122 2123 2124 2125 2126 2127


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2128 2129 2130 2131 2132 2133 2134
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2170
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2198
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2218
    l = Layer(
Z
zhangjinchao01 已提交
2219
        name=name,
Q
qijun 已提交
2220 2221
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2222 2223 2224 2225 2226 2227
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2228
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2229

Q
qijun 已提交
2230 2231 2232 2233 2234 2235 2236
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2264
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2265 2266 2267 2268 2269 2270
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2271 2272 2273
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2274 2275 2276 2277 2278 2279


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2280
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2303 2304 2305
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2306 2307

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2308 2309
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2324
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2325 2326 2327 2328 2329 2330
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2331
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2332 2333 2334 2335 2336 2337 2338
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2339
    l = Layer(
Q
qijun 已提交
2340 2341 2342
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2343 2344
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2345
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2346

Q
qijun 已提交
2347 2348 2349 2350 2351 2352 2353
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2354 2355 2356 2357 2358


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2359
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2360 2361 2362 2363
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2364 2365 2366 2367 2368 2369
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2370 2371 2372
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2373
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2374 2375 2376 2377
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2378
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2379 2380 2381 2382 2383 2384 2385 2386
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2387
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2388 2389

    def __is_type__(o, tp):
2390
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2412 2413
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2414

Q
qijun 已提交
2415 2416
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
2417

2418 2419
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2420

Z
zhangjinchao01 已提交
2421
    Layer(
Q
qijun 已提交
2422 2423
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
2424 2425
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2426
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2427
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436

    sz = 0
    for each_input in input:
        if each_input.size is not None:
            sz += each_input.size
        else:
            sz = None
            break

Q
qijun 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


def memory(name,
           size,
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.


    The same name layer in recurrent group will set memory on each time
    step.

    :param name: memory's name.
    :type name: basestring
    :param size: size of memory.
    :type size: int
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
2486
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)

Q
qijun 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506
    agent_name = Memory(name, size, is_seq, boot_layer.name
                        if boot_layer is not None else None, boot_bias,
                        boot_bias_active_type.name, boot_with_const_id)

    lout = LayerOutput(
        name=agent_name,
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
2507 2508 2509 2510
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
2511 2512
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
2513 2514 2515
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524
def lstm_step_layer(input,
                    state,
                    size,
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
2525 2526 2527 2528 2529 2530
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

L
luotao02 已提交
2531
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
2532

L
luotao02 已提交
2533
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
2534

L
luotao02 已提交
2535
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
2536

L
luotao02 已提交
2537
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
2538

L
luotao02 已提交
2539
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
2540 2541


L
luotao02 已提交
2542
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2581
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2591 2592 2593
        size=size,
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2594

Q
qijun 已提交
2595 2596 2597 2598 2599 2600 2601
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
2602 2603 2604


@wrap_bias_attr_default()
Q
qijun 已提交
2605
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
2606 2607 2608
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
2609 2610 2611 2612 2613 2614 2615 2616
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
                   layer_attr=None):
Z
zhangjinchao01 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
    :param layer_attr:
D
dangqingqing 已提交
2628
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2629 2630 2631 2632 2633 2634 2635 2636
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
Q
qijun 已提交
2637
        inputs=[input.name, output_mem.name],
Z
zhangjinchao01 已提交
2638 2639 2640 2641
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
2642
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2643
    return LayerOutput(
Q
qijun 已提交
2644 2645
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
2646
        parents=[input, output_mem],
Q
qijun 已提交
2647 2648
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
2649 2650 2651 2652 2653 2654


@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
2655 2656 2657 2658
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
2668
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2669 2670 2671 2672 2673 2674 2675
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
2676 2677 2678 2679 2680 2681 2682
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2683

Q
qijun 已提交
2684 2685 2686 2687 2688
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
2689 2690 2691 2692 2693 2694 2695


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
2696 2697 2698 2699 2700 2701 2702
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
2703
    """
2704 2705
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
2706

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2734
    :return: LayerOutput object.
2735
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2736
    """
Q
qijun 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
2752 2753 2754 2755 2756 2757 2758


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
2759

Z
zhangjinchao01 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
2779

Z
zhangjinchao01 已提交
2780 2781 2782 2783 2784 2785 2786
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
2787 2788 2789 2790 2791
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
2792
                    is_generating=False):
Z
zhangjinchao01 已提交
2793
    """
C
caoying03 已提交
2794 2795 2796 2797 2798
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

2843 2844
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
2845
    :type reverse: bool
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
2857
    :param is_generating: If is generating, none of input type should be LayerOutput;
2858
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
2859
                          be LayerOutput.
L
Luo Tao 已提交
2860

L
Luo Tao 已提交
2861
    : type is_generating: bool
2862

D
dangqingqing 已提交
2863
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
2874
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2875 2876 2877 2878 2879 2880

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

2881 2882 2883 2884 2885 2886 2887 2888 2889
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

Q
qijun 已提交
2890
    assert (targetInlink == None or targetInlink_in_inlinks())
2891 2892 2893 2894
    targetInlinkName = None if targetInlink == None \
                            else targetInlink.name if isinstance(targetInlink, LayerOutput) \
                                                   else targetInlink.input.name

Z
zhangjinchao01 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
2905 2906
        name=name,
        in_links=map(map_in_links, in_links),
2907 2908
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
Z
zhangjinchao01 已提交
2909
    in_args = []
2910
    has_LayerOutput = False
Z
zhangjinchao01 已提交
2911 2912 2913 2914
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
2915
            has_LayerOutput = True
Z
zhangjinchao01 已提交
2916 2917
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
2918
            has_LayerOutput = True
Z
zhangjinchao01 已提交
2919 2920
        else:
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
Z
zhangjinchao01 已提交
2930 2931 2932
                mix += identity_projection(mem)
            in_args.append(mem)

L
Luo Tao 已提交
2933
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
2934

Z
zhangjinchao01 已提交
2935 2936 2937 2938 2939 2940 2941
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
2942
        ot.reverse = reverse
Z
zhangjinchao01 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

2955

Z
zhangjinchao01 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
2982 2983 2984
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
2985
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3009
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3010 3011 3012 3013
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3024

3025

H
Haonan 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3062

Z
zhangjinchao01 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3079 3080
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3081 3082 3083 3084 3085 3086
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3087
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3088 3089
    :rtype: LayerOutput
    """
Q
qijun 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3101 3102 3103


@wrap_name_default()
Q
qijun 已提交
3104 3105 3106 3107 3108 3109 3110
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3111
                num_results_per_sample=None):
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3123
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3124 3125 3126 3127 3128 3129
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3130
                               input=[StaticInput(encoder_last)],
3131 3132
                               bos_id=0,
                               eos_id=1,
3133
                               beam_size=5)
3134 3135 3136 3137 3138 3139 3140 3141 3142

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3143
                 step, and it is applied to sequences with arbitrary length by
3144 3145 3146 3147 3148 3149
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
    :param input: Input data for the recurrent unit
3150
    :type input: list
3151 3152 3153
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3154
                   symbol is essential, since it is used to initialize the RNN
3155 3156 3157 3158 3159 3160 3161 3162
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3163 3164
    :param max_length: Max generated sequence length.
    :type max_length: int
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3175 3176
    :return: The generated word index.
    :rtype: LayerOutput
3177 3178
    """

Z
zhangjinchao01 已提交
3179 3180 3181 3182 3183
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3184
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3185 3186 3187 3188 3189 3190
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3191 3192
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInput)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3209 3210 3211 3212 3213 3214
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)

        return predict

Q
qijun 已提交
3225
    tmp = recurrent_group(
L
Luo Tao 已提交
3226 3227 3228 3229
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3230
        is_generating=True)
3231

Z
zhangjinchao01 已提交
3232 3233
    return tmp

Q
qijun 已提交
3234

3235 3236
def __cost_input__(input, label, weight=None):
    """
3237
    inputs and parents for cost layers.
3238 3239 3240 3241 3242 3243 3244 3245
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
        assert weight.layer_type == LayerType.DATA
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3246

Z
zhangjinchao01 已提交
3247 3248

@wrap_name_default()
L
luotao1 已提交
3249
@layer_support()
Q
qijun 已提交
3250
def regression_cost(input, label, weight=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3251 3252 3253 3254 3255 3256
    """
    Regression Layer.

    TODO(yuyang18): Complete this method.

    :param name: layer name.
3257
    :type name: basestring
Z
zhangjinchao01 已提交
3258
    :param input: Network prediction.
3259
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3260
    :param label: Data label.
3261 3262 3263 3264
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
L
luotao1 已提交
3265 3266
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3267
    :return: LayerOutput object.
3268
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3269
    """
3270 3271
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3272 3273 3274 3275 3276
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
3277
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3278 3279 3280


@wrap_name_default("cost")
3281
@layer_support()
Q
qijun 已提交
3282 3283 3284 3285
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
3286 3287
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
Z
zhangjinchao01 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3297 3298 3299
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
3300
    :param evaluator: Evaluator method.
3301 3302
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3303
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3304 3305 3306 3307 3308
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3309 3310 3311

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3312 3313 3314 3315 3316
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

3327
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
3328

3329
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
3330 3331 3332 3333 3334
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
3335
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3336

3337

Q
qijun 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
                  padding_y=None):
Z
zhangjinchao01 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

3358 3359
       op = conv_operator(img=input1,
                          filter=input2,
3360
                          filter_size=3,
Z
zhangjinchao01 已提交
3361 3362 3363
                          num_filters=64,
                          num_channels=64)

3364 3365 3366 3367
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
3368 3369
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
3370 3371 3372
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
3373
    :type filter_size_y: int
3374 3375
    :param num_filters: channel of output data.
    :type num_filters: int
3376 3377
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
3378
    :param stride: The x dimension of the stride.
L
luotao02 已提交
3379
    :type stride: int
Z
zhangjinchao01 已提交
3380
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
3381
    :type stride_y: int
Z
zhangjinchao01 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
3395

3396 3397
    if num_channels is None:
        num_channels = img.num_filters
3398 3399 3400

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
3401
        filter.size = filter_size * filter_size_y * num_filters * num_channels
3402

Q
qijun 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
    op = ConvOperator(
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
3415
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
3416 3417
    return op

Q
qijun 已提交
3418

3419
@wrap_param_attr_default()
Q
qijun 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
                    param_attr=None):
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    """
    ConvProjection with a layer as input.
    It performs element-wise multiplication with weight.

    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

       proj = conv_projection(img=input1,
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
3458 3459
    :param num_channels: channel of input data.
    :type num_channels: int
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
3502
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
3503 3504 3505 3506 3507
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

Q
qijun 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    proj = ConvProjection(
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
3521 3522 3523 3524

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
3525 3526

@wrap_name_default()
L
luotao1 已提交
3527 3528
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
3540 3541 3542 3543
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
3544 3545 3546 3547 3548

    The example usage is:

    .. code-block:: python

3549
       conv_shift = conv_shift_layer(input=[layer1, layer2])
Z
zhangjinchao01 已提交
3550 3551 3552

    :param name: layer name
    :type name: basestring
3553 3554 3555 3556
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
L
luotao1 已提交
3557 3558
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3559
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3560 3561
    :rtype: LayerOutput
    """
3562 3563
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
3564 3565 3566
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
3567
        inputs=[a.name, b.name],
Q
qijun 已提交
3568
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3569

Q
qijun 已提交
3570 3571
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
3572 3573 3574 3575 3576


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
3577
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
3578
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
3579 3580 3581 3582 3583 3584 3585 3586
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
3587 3588 3589 3590 3591
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
3592
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
3593 3594

    In this formular:
3595 3596
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
3597 3598
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
3599
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
3600 3601 3602 3603 3604

    The simple usage is:

    .. code-block:: python

3605
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
3606 3607 3608

    :param name: layer name
    :type name: basestring
3609 3610 3611 3612
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
3613
    :param size: the layer dimension.
L
luotao02 已提交
3614
    :type size: int.
Z
zhangjinchao01 已提交
3615 3616 3617
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
3618
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
3625
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3626 3627
    :rtype: LayerOutput
    """
3628
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
3629 3630 3631 3632 3633 3634
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3635 3636 3637 3638
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
3639 3640 3641 3642 3643 3644


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
3645
@layer_support()
Q
qijun 已提交
3646 3647 3648 3649 3650
def selective_fc_layer(input,
                       select,
                       size,
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
3651 3652 3653
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
3654 3655 3656
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

3667
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
3668 3669 3670 3671 3672

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
3673 3674 3675
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
    :type select: LayerOutput
Z
zhangjinchao01 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
3688
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3689 3690 3691 3692
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
3693
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
3694 3695
        param_attr = [param_attr]
    else:
3696
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
3697 3698 3699 3700
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

3701 3702 3703 3704
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
3705
    Layer(
Q
qijun 已提交
3706 3707 3708
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
3709 3710 3711
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
3712
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
3713 3714 3715 3716
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
3717 3718 3719 3720 3721 3722 3723
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
3724 3725 3726


@wrap_name_default()
L
luotao1 已提交
3727 3728
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
3743 3744
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
3745
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3746 3747
    :rtype: LayerOutput
    """
X
xuwei06 已提交
3748
    l = Layer(
Z
zhangjinchao01 已提交
3749 3750 3751
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
3752 3753 3754
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
3755 3756 3757


@wrap_name_default()
L
luotao1 已提交
3758
@layer_support()
Q
qijun 已提交
3759 3760 3761 3762
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
3763
                          layer_attr=None):
Z
zhangjinchao01 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
3785 3786
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
3787
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3788 3789 3790 3791 3792 3793 3794 3795
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
3796 3797 3798
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
3799 3800 3801


@wrap_name_default()
L
luotao1 已提交
3802
@layer_support()
Q
qijun 已提交
3803
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
3804
    """
3805 3806 3807 3808
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
3809 3810 3811

    .. math::

3812
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
3813

3814 3815 3816 3817 3818
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
3819

3820
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
3821 3822

    In this formular:
3823 3824 3825 3826 3827 3828
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
3829 3830 3831 3832 3833

    The simple usage is:

    .. code-block:: python

3834
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
3835 3836
                                       size=elem_dim)

3837 3838 3839 3840
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
3841 3842 3843 3844
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
3845 3846
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
3847
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3848 3849
    :rtype: LayerOutput
    """
3850 3851 3852 3853
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
3854
            size = vectors.size / weights.size
3855 3856
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
3857 3858
    Layer(
        name=name,
3859
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
3860
        size=size,
3861
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
3862 3863 3864
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
3865

3866

3867
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
3868

3869

Z
zhangjinchao01 已提交
3870
@wrap_name_default()
L
luotao1 已提交
3871
@layer_support()
Z
zhangjinchao01 已提交
3872 3873 3874 3875 3876 3877 3878
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
3879
                       num_channels=None,
L
luotao1 已提交
3880 3881
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
3882 3883
    """
    Expand feature map to minibatch matrix.
3884
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
3885
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
3896
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
3897 3898
    convolution neural network, and before recurrent neural network.

3899 3900 3901 3902 3903
    The simple usage is:

    .. code-block:: python

       block_expand = block_expand_layer(input,
3904
                                         num_channels=128,
3905 3906 3907 3908 3909
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
3910 3911
    :param input: The input layer.
    :type input: LayerOutput
3912 3913
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
3928 3929
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
3930
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3931 3932
    :rtype: LayerOutput
    """
3933 3934 3935
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
3953 3954


3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
@wrap_name_default()
@layer_support()
def maxout_layer(input,
                 groups,
                 num_channels=None,
                 size_x=None,
                 size_y=None,
                 name=None,
                 layer_attr=None):
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

3969
    So groups should be larger than 1, and the num of channels should be able
3970 3971
    to devided by groups.

3972
    Please refer to Paper:
3973 3974 3975 3976
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
3977

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param size_x: conv output width. If None will be set
                   automatically from previous output.
    :type size_x: int|None
    :param size_y: conv output height. If None will be set
                   automatically from previous output.
    :type size_y: int|None
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4022 4023


Z
zhangjinchao01 已提交
4024
@wrap_name_default()
L
luotao1 已提交
4025
@layer_support()
Q
qijun 已提交
4026 4027 4028 4029 4030
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4031
              layer_attr=None):
Z
zhangjinchao01 已提交
4032 4033 4034 4035 4036
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4037 4038
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4039 4040
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4041 4042 4043 4044 4045 4046 4047 4048

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

Z
zhangjinchao01 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057
    The simple usage:

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4058
    :param input: The input layer.
Z
zhangjinchao01 已提交
4059 4060 4061
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4062
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4063
    :type size: int
4064 4065
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4066 4067
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4068 4069
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4070
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4071 4072 4073 4074
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4075 4076 4077 4078 4079
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4080
    Layer(
4081 4082 4083 4084
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4085
        inputs=[input.name, label.name],
Q
qijun 已提交
4086
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4087 4088
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4089

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
    <https://github.com/baidu-research/warp-ctc>` library, which is used in
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
    <https://arxiv.org/pdf/1512.02595v1.pdf>`, to compute Connectionist Temporal
    Classification (CTC) loss.

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc_layer and 'input' layer should be set to
          num_classes + 1.
        - You can set 'blank' to [0, num_classes - 1], which should be consistent
          as that used in your labels.
        - As a native 'softmax' activation is interated to the warp-ctc library,
         'linear' activation is expected instead in the 'input' layer.

    The simple usage:

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
4167
@wrap_name_default()
4168
@wrap_param_attr_default()
L
luotao1 已提交
4169
@layer_support()
Q
qijun 已提交
4170 4171 4172 4173 4174 4175
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
L
luotao1 已提交
4176
              layer_attr=None):
Z
zhangjinchao01 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
    """
    A layer for calculating the cost of sequential conditional random
    field model.

    The simple usage:

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4192
    :type label: LayerOutput
Z
zhangjinchao01 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4202 4203
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4204
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4205 4206 4207 4208 4209
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4210 4211 4212 4213 4214 4215
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
4216

Q
qijun 已提交
4217
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
4218 4219 4220 4221
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4222 4223 4224 4225
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4226
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4227 4228 4229
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
4230 4231 4232 4233
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4234

4235

Z
zhangjinchao01 已提交
4236
@wrap_name_default()
4237
@wrap_param_attr_default()
L
luotao1 已提交
4238
@layer_support()
Q
qijun 已提交
4239 4240 4241 4242 4243
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
4244
                       layer_attr=None):
Z
zhangjinchao01 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4262 4263
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4264
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4265 4266 4267 4268 4269 4270
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

4271
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
4272 4273 4274 4275
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
4276 4277 4278 4279
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
4280
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4281 4282 4283
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
4284 4285 4286 4287
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
4288

Q
qijun 已提交
4289

4290 4291 4292
@wrap_bias_attr_default(has_bias=True)
@wrap_name_default()
@layer_support()
Q
qijun 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301
def nce_layer(input,
              label,
              num_classes,
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

       cost = nce_layer(input=layer1, label=layer2, weight=layer3,
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
4323
    :type num_classes: int
4324
    :param num_neg_samples: number of negative samples. Default is 10.
4325
    :type num_neg_samples: int
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
        assert sum(neg_distribution) == 1
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
    ipts_for_layer = []
    parents = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(each_input.name)
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
4362
    l = Layer(
4363 4364 4365 4366 4367 4368 4369
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4370 4371 4372 4373
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.NCE_LAYER, parents=parents, size=l.config.size)

4374

Z
zhangjinchao01 已提交
4375 4376 4377
"""
following are cost Layers.
"""
4378 4379


Z
zhangjinchao01 已提交
4380
@wrap_name_default()
L
luotao1 已提交
4381
@layer_support()
Q
qijun 已提交
4382 4383 4384 4385 4386 4387 4388
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
4389
    """
4390
    A cost Layer for learning to rank using gradient descent. Details can refer
4391 4392
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
4393 4394 4395 4396 4397
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
4398
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
4399

L
luotao02 已提交
4400
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
4401

L
luotao02 已提交
4402
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

    The simple usage:

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4432 4433
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4434
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
4447 4448 4449 4450 4451 4452
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4453

X
xuwei06 已提交
4454
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4455

4456

Z
zhangjinchao01 已提交
4457
@wrap_name_default()
L
luotao1 已提交
4458
@layer_support()
Q
qijun 已提交
4459 4460 4461 4462 4463 4464
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
    """
    lambdaCost for lambdaRank LTR approach.

    The simple usage:

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

4477
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
4489 4490 4491
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
4492 4493 4494
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4495 4496
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4497
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4498 4499
    :rtype: LayerOutput
    """
4500 4501 4502
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
4503 4504 4505 4506 4507 4508 4509
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4510

Q
qijun 已提交
4511 4512
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
4513

4514

Z
zhangjinchao01 已提交
4515
@wrap_name_default()
L
luotao1 已提交
4516 4517
@layer_support()
def cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4518 4519 4520 4521 4522
    """
    A loss layer for multi class entropy.

    .. code-block:: python

X
xuwei06 已提交
4523
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
4524
                            label=label_layer)
Z
zhangjinchao01 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
4534 4535
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4536
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4537 4538 4539
    :rtype: LayerOutput.
    """

Q
qijun 已提交
4540 4541 4542 4543 4544 4545 4546 4547
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.CROSS_ENTROPY, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
4548

4549

Z
zhangjinchao01 已提交
4550
@wrap_name_default()
L
luotao1 已提交
4551
@layer_support()
Q
qijun 已提交
4552 4553 4554 4555
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
4556 4557
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
4558 4559 4560 4561 4562
    """
    A loss layer for multi class entropy with selfnorm.

    .. code-block:: python

X
xuwei06 已提交
4563
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
4564
                                          label=label_layer)
Z
zhangjinchao01 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
4576 4577
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4578
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4579 4580
    :rtype: LayerOutput.
    """
Q
qijun 已提交
4581 4582 4583 4584 4585 4586 4587
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4588

Q
qijun 已提交
4589 4590 4591 4592 4593
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
4594

4595

X
xuwei06 已提交
4596 4597 4598 4599 4600 4601 4602 4603
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

    .. code-block:: python

L
Luo Tao 已提交
4604
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
4615
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4616 4617 4618 4619 4620
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4621

Q
qijun 已提交
4622
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
4623 4624


Z
zhangjinchao01 已提交
4625
@wrap_name_default()
L
luotao1 已提交
4626 4627
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4628 4629 4630 4631 4632
    """
    A loss layer for huber loss.

    .. code-block:: python

X
xuwei06 已提交
4633
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
4634
                         label=label_layer)
Z
zhangjinchao01 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
4644 4645
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4646
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4647 4648
    :rtype: LayerOutput.
    """
4649 4650 4651
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
4652 4653 4654 4655 4656 4657
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4658
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
4659

4660

Z
zhangjinchao01 已提交
4661
@wrap_name_default()
L
luotao1 已提交
4662
@layer_support()
Q
qijun 已提交
4663 4664 4665 4666
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
4667
                                     layer_attr=None):
Z
zhangjinchao01 已提交
4668 4669 4670 4671 4672
    """
    A loss layer for multi binary label cross entropy.

    .. code-block:: python

X
xuwei06 已提交
4673
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
4674
                                               label=label_layer)
Z
zhangjinchao01 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param type: The type of cost.
    :type type: basestring
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4686 4687
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4688
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4689 4690 4691
    :rtype: LayerOutput
    """

4692 4693
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)