test_adamax_op.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
import unittest
import numpy as np
from op_test import OpTest


class TestAdamaxOp1(OpTest):
    def setUp(self):
        '''Test Adamax Operator with supplied attributes
        '''
        self.op_type = "adamax"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The infinity norm is positive
        inf_norm = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.002
        beta1 = 0.78
        beta2 = 0.899
        epsilon = 1e-5
        beta1_pow = beta1**10

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'InfNorm': inf_norm,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32")
        }

        self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}

        param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
            self.inputs, self.attrs)

        self.outputs = {
            'ParamOut': param_out,
            'MomentOut': moment_out,
            'InfNormOut': inf_norm_out,
            'Beta1PowOut': beta1_pow_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamaxOp2(OpTest):
    '''Test Adamax Operator with default attributes
    '''

    def setUp(self):
        self.op_type = "adamax"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The infinity norm is positive
        inf_norm = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.002
        beta1 = 0.9
        beta2 = 0.999
        epsilon = 1e-8
        beta1_pow = beta1**8

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'InfNorm': inf_norm,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32")
        }

        attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
        param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
            self.inputs, attrs)

        self.outputs = {
            'ParamOut': param_out,
            'MomentOut': moment_out,
            'InfNormOut': inf_norm_out,
            'Beta1PowOut': beta1_pow_out
        }

    def test_check_output(self):
        self.check_output()


class TestAdamaxOpMultipleSteps(OpTest):
    def setUp(self):
        '''Test Adamax Operator with supplied attributes
        '''
        self.op_type = "adamax"
        self.num_steps = 10

        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The infinity norm is positive
        inf_norm = np.random.random((102, 105)).astype("float32")

        learning_rate = 0.002
        beta1 = 0.8
        beta2 = 0.99
        epsilon = 1e-5
        beta1_pow = 1

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'InfNorm': inf_norm,
            'LearningRate': np.array([learning_rate]).astype("float32"),
            'Beta1Pow': np.array([beta1_pow]).astype("float32")
        }

        self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}

        param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
            self.inputs, self.attrs)

    def test_check_output(self):
        for _ in range(self.num_steps):
            param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step(
                self.inputs, self.attrs)

            self.outputs = {
                'ParamOut': param_out,
                'MomentOut': moment_out,
                'InfNormOut': inf_norm_out,
                'Beta1PowOut': beta1_pow_out
            }

            # Verify output for this step
            self.check_output()

            # Output of this step becomes input for next step
            self.inputs['Param'] = param_out
            self.inputs['Moment'] = moment_out
            self.inputs['InfNorm'] = inf_norm_out
            self.inputs['Beta1Pow'] = beta1_pow_out

            # Randomize gradient for next step
            self.inputs['Grad'] = np.random.uniform(
                -1, 1, (102, 105)).astype("float32")


def adamax_step(inputs, attributes):
    '''
    Simulate one step of the adamax optimizer
    :param inputs: dict of inputs
    :param attributes: dict of attributes
    :return tuple: tuple of output param, moment, inf_norm and
    beta1 power accumulator
    '''
    param = inputs['Param']
    grad = inputs['Grad']
    moment = inputs['Moment']
    inf_norm = inputs['InfNorm']
    lr = inputs['LearningRate']
    beta1_pow = inputs['Beta1Pow']

    beta1 = attributes['beta1']
    beta2 = attributes['beta2']
    epsilon = attributes['epsilon']

    moment_out = beta1 * moment + (1 - beta1) * grad
    inf_norm_out = np.maximum(beta2 * inf_norm + epsilon, np.abs(grad))
    beta1_pow_out = beta1_pow * beta1
    lr_t = (lr / (1 - beta1_pow_out))
    param_out = param - lr_t * np.divide(moment_out, inf_norm_out)

    return param_out, moment_out, inf_norm_out, beta1_pow_out


if __name__ == "__main__":
    unittest.main()