gaussian_random_op.cu 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
16
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
28
  unsigned int offset_ = 0;
Q
qijun 已提交
29 30 31 32

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
33 34 35
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
36 37 38
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
39
    thrust::normal_distribution<T> dist(mean_, std_);
Y
yaoxuefeng 已提交
40 41
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
42
    return dist(rng);
Q
qijun 已提交
43 44 45 46
  }
};

template <typename T>
Y
Yu Yang 已提交
47
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
48 49 50
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
51
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
52
    bool seed_flag = false;
Q
qijun 已提交
53 54 55
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
56
      seed_flag = true;
Q
qijun 已提交
57
    }
Y
Yu Yang 已提交
58 59
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Q
qijun 已提交
60
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
61
    auto shape = GetShape(context);
62 63 64
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

65
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
66 67 68 69 70 71 72

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
73
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
74 75 76 77 78 79 80 81 82
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
83 84 85
  }
};

86 87 88 89 90 91 92
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
93
    bool seed_flag = false;
94 95 96
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
97
      seed_flag = true;
98 99 100 101 102
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
103 104 105 106 107 108 109

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
110
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
111 112 113 114 115 116 117 118 119
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
120 121
  }
};
Q
qijun 已提交
122 123
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
124

125 126 127
REGISTER_OP_CUDA_KERNEL(gaussian_random,
                        paddle::operators::GPUGaussianRandomKernel<float>,
                        paddle::operators::GPUGaussianRandomKernel<double>);
128 129 130
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
131
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);