roi_pool_op.h 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <limits>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaox 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25
static constexpr int kROISize = 4;

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
W
wanghaox 已提交
27
class CPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
30
    auto* in = ctx.Input<framework::Tensor>("X");
31
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
W
wanghaox 已提交
32 33
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto* argmax = ctx.Output<framework::Tensor>("Argmax");
W
wanghaox 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto argmax_stride = framework::stride(argmax->dims());
    auto roi_stride = framework::stride(rois->dims());
W
wanghaox 已提交
49
    auto out_stride = framework::stride(out->dims());
W
wanghaox 已提交
50 51 52

    const T* input_data = in->data<T>();

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size, batch_size,
        "The rois_batch_size and imgs batch_size must be the same.");
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                      "The rois_num from input and lod must be the same.");
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
W
wanghaox 已提交
70 71
    }

72 73 74 75
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());

    const int64_t* rois_data = rois->data<int64_t>();
W
wanghaox 已提交
76
    for (int n = 0; n < rois_num; ++n) {
77 78 79 80 81
      int roi_batch_id = roi_batch_id_data[n];
      int roi_start_w = round(rois_data[0] * spatial_scale);
      int roi_start_h = round(rois_data[1] * spatial_scale);
      int roi_end_w = round(rois_data[2] * spatial_scale);
      int roi_end_h = round(rois_data[3] * spatial_scale);
W
wanghaox 已提交
82 83 84 85 86 87 88 89 90 91

      // Force malformed ROIs to be 1x1
      int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
      int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);

      const float bin_size_h =
          static_cast<float>(roi_height) / static_cast<float>(pooled_height);
      const float bin_size_w =
          static_cast<float>(roi_width) / static_cast<float>(pooled_width);

W
wanghaox 已提交
92
      const T* batch_data = input_data + roi_batch_id * in_stride[0];
W
wanghaox 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

      for (int c = 0; c < channels; ++c) {
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            //  Compute pooling region for this output unit:
            //  start (included) = floor(ph * roi_height / pooled_height_)
            //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
            int hstart =
                static_cast<int>(floor(static_cast<float>(ph) * bin_size_h));
            int wstart =
                static_cast<int>(floor(static_cast<float>(pw) * bin_size_w));
            int hend =
                static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h));
            int wend =
                static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w));

            hstart = std::min(std::max(hstart + roi_start_h, 0), height);
            hend = std::min(std::max(hend + roi_start_h, 0), height);
            wstart = std::min(std::max(wstart + roi_start_w, 0), width);
            wend = std::min(std::max(wend + roi_start_w, 0), width);

            const int pool_index = ph * pooled_width + pw;

            // Define an empty pooling region to be zero
            bool is_empty = (hend <= hstart) || (wend <= wstart);
W
wanghaox 已提交
118
            output_data[pool_index] =
W
wanghaox 已提交
119 120
                is_empty ? 0 : -std::numeric_limits<T>::max();
            argmax_data[pool_index] = -1;
W
wanghaox 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                const int index = h * width + w;
                if (batch_data[index] > output_data[pool_index]) {
                  output_data[pool_index] = batch_data[index];
                  argmax_data[pool_index] = index;
                }
              }
            }
          }
        }

        batch_data += in_stride[1];
        output_data += out_stride[1];
        argmax_data += argmax_stride[1];
      }
      // Increment ROI data pointer
      rois_data += roi_stride[0];
    }
    return;
  }
};

Q
QI JUN 已提交
145
template <typename DeviceContext, typename T>
W
wanghaox 已提交
146
class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
147 148
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
149
    auto* in = ctx.Input<framework::Tensor>("X");
150
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
W
wanghaox 已提交
151
    auto* argmax = ctx.Input<framework::Tensor>("Argmax");
W
wanghaox 已提交
152
    auto* out_grad =
W
wanghaox 已提交
153
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
G
guosheng 已提交
154
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
W
wanghaox 已提交
155 156 157 158

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");

G
guosheng 已提交
159
    if (in_grad) {
160 161 162 163 164 165 166 167 168 169 170 171 172 173
      int rois_num = rois->dims()[0];
      framework::Tensor roi_batch_id_list;
      roi_batch_id_list.Resize({rois_num});
      int* roi_batch_id_data =
          roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }

W
wanghaox 已提交
174
      const int64_t* rois_data = rois->data<int64_t>();
G
guosheng 已提交
175 176 177
      const T* out_grad_data = out_grad->data<T>();
      const int64_t* argmax_data = argmax->data<int64_t>();
      T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
Q
QI JUN 已提交
178 179 180
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), in_grad,
               static_cast<T>(0));
W
wanghaox 已提交
181

G
guosheng 已提交
182 183 184 185
      auto in_stride = framework::stride(in->dims());
      auto argmax_stride = framework::stride(argmax->dims());
      auto roi_stride = framework::stride(rois->dims());
      auto out_stride = framework::stride(out_grad->dims());
W
wanghaox 已提交
186

G
guosheng 已提交
187
      int channels = in->dims()[1];
W
wanghaox 已提交
188

G
guosheng 已提交
189
      for (int n = 0; n < rois_num; ++n) {
190
        int roi_batch_idx = roi_batch_id_data[n];
G
guosheng 已提交
191
        T* batch_grad_data = in_grad_data + roi_batch_idx * in_stride[0];
W
wanghaox 已提交
192 193 194
        for (int c = 0; c < channels; ++c) {
          for (int ph = 0; ph < pooled_height; ++ph) {
            for (int pw = 0; pw < pooled_width; ++pw) {
G
guosheng 已提交
195
              int pool_index = ph * pooled_width + pw;
W
wanghaox 已提交
196
              if (argmax_data[pool_index] >= 0) {
G
guosheng 已提交
197
                auto index = argmax_data[pool_index];
W
wanghaox 已提交
198 199 200 201
                batch_grad_data[index] += out_grad_data[pool_index];
              }
            }
          }
G
guosheng 已提交
202 203 204
          batch_grad_data += in_stride[1];
          out_grad_data += out_stride[1];
          argmax_data += argmax_stride[1];
W
wanghaox 已提交
205
        }
G
guosheng 已提交
206
        rois_data += roi_stride[0];
W
wanghaox 已提交
207 208 209 210 211 212 213
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle