api_v2_train.py 2.4 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
L
liaogang 已提交
13
# limitations under the License
L
liaogang 已提交
14

L
liaogang 已提交
15 16
from api_v2_vgg import resnet_cifar10
from api_v2_resnet import vgg_bn_drop
L
liaogang 已提交
17
import paddle.v2 as paddle
L
liaogang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30


def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
                                                  event.cost)


def main():
    datadim = 3 * 32 * 32
    classdim = 10

L
liaogang 已提交
31
    paddle.init(use_gpu=True, trainer_count=1)
L
liaogang 已提交
32 33 34

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(datadim))
L
liaogang 已提交
35 36 37 38

    # option 1. resnet
    net = resnet_cifar10(image, depth=32)
    # option 2. vgg
L
liaogang 已提交
39
    # net = vgg_bn_drop(image)
L
liaogang 已提交
40 41

    out = paddle.layer.fc(input=net,
L
liaogang 已提交
42 43 44 45 46 47 48 49
                          size=classdim,
                          act=paddle.activation.Softmax())

    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(classdim))
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    parameters = paddle.parameters.create(cost)
L
liaogang 已提交
50

L
liaogang 已提交
51 52
    momentum_optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
L
liaogang 已提交
53
        regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
L
liaogang 已提交
54 55 56 57 58 59
        learning_rate=0.1 / 128.0,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=50000 * 100,
        learning_rate_schedule='discexp',
        batch_size=128)

L
liaogang 已提交
60 61 62
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=momentum_optimizer)
L
liaogang 已提交
63 64 65
    trainer.train(
        reader=paddle.reader.batched(
            paddle.reader.shuffle(
L
liaogang 已提交
66
                paddle.dataset.cifar.train10(), buf_size=50000),
L
liaogang 已提交
67
            batch_size=128),
L
liaogang 已提交
68
        num_passes=5,
L
liaogang 已提交
69 70
        event_handler=event_handler,
        reader_dict={'image': 0,
L
liaogang 已提交
71
                     'label': 1})
L
liaogang 已提交
72 73 74 75


if __name__ == '__main__':
    main()