bert_encoder_functor.cu 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_runtime.h>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T, int TPB>
__device__ inline void LayerNormSmall(T val, const kvp<T> &thread_data,
                                      const int ld, const int idx,
                                      const float *bias, const float *scale,
                                      T *output, T eps) {
  using BlockReduce = cub::BlockReduce<kvp<T>, TPB>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
    rsigma = rsqrt(sum_kv.value - mu * mu + eps);
  }
  __syncthreads();

  if (threadIdx.x < ld) {
    const T g(scale[threadIdx.x]);
    const T b(bias[threadIdx.x]);
    output[idx] = g * (val - mu) * rsigma + b;
  }
}

template <typename T, int TPB>
__device__ inline void LayerNorm(const kvp<T> &thread_data, const int ld,
                                 const int offset, const float *bias,
                                 const float *scale, T *output, T eps) {
  using BlockReduce = cub::BlockReduce<kvp<T>, TPB>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T mu;      // mean
  __shared__ T rsigma;  // 1 / std.dev.

  const auto sum_kv = BlockReduce(temp_storage).Reduce(thread_data, cub::Sum());

  if (threadIdx.x == 0) {
    mu = sum_kv.key;
    rsigma = rsqrt(sum_kv.value - mu * mu + eps);
  }
  __syncthreads();

  for (int i = threadIdx.x; i < ld; i += TPB) {
    const int idx = offset + i;
    const T val = output[idx];
    const T g(scale[i]);
    const T b(bias[i]);
    output[idx] = g * (val - mu) * rsigma + b;
  }
}

template <typename T, unsigned TPB>
__global__ void EmbEltwiseLayernormKernel(int hidden, const int64_t *ids,
                                          const float *scale, const float *bias,
                                          const int64_t *embs, T *output,
                                          float eps, int input_num) {
  cub::Sum pair_sum;
  // blockIdx.x: position in the sequence
  // blockIdx.y: batch
  // gridDim.x: Seq
  // gridDim.y: Batch

  extern __shared__ int64_t array_id[];

  const T rhidden = T(1.f) / T(hidden);
  const int64_t seq_pos = blockIdx.y + blockIdx.x * gridDim.y;
  if (threadIdx.x == 0) {
    for (int i = 0; i < input_num; ++i) {
      const int64_t *ids_p = reinterpret_cast<const int64_t *>(ids[i]);
      array_id[i] = ids_p[seq_pos];
    }
  }
  __syncthreads();

  const int64_t out_offset = seq_pos * hidden;

  kvp<T> thread_data(0, 0);

#pragma unroll
  for (int it = threadIdx.x; it < hidden; it += TPB) {
    T val = 0;
    for (int i = 0; i < input_num; ++i) {
      val += reinterpret_cast<const T *>(embs[i])[array_id[i] * hidden + it];
    }

    output[out_offset + it] = val;
    const T rhiddenval = rhidden * val;
    thread_data = pair_sum(thread_data, kvp<T>(rhiddenval, rhiddenval * val));
  }
  LayerNorm<T, TPB>(thread_data, hidden, out_offset, bias, scale, output, eps);
}

template <typename T>
void EmbEltwiseLayerNormFunctor<T>::operator()(
    int batch, int seq_len, int hidden, const int64_t *ids, const float *scale,
    const float *bias, const int64_t *embs, T *output, float eps, int input_num,
    cudaStream_t stream) {
  const unsigned tpb = 256;
  const dim3 grid(seq_len, batch, 1);
  const dim3 block(tpb, 1, 1);
  int shared_bytes = input_num * sizeof(int64_t);
  EmbEltwiseLayernormKernel<T, tpb><<<grid, block, shared_bytes, stream>>>(
      hidden, ids, scale, bias, embs, output, eps, input_num);
}

template class EmbEltwiseLayerNormFunctor<float>;

#ifdef SUPPORTS_CUDA_FP16
template class EmbEltwiseLayerNormFunctor<half>;
#endif

template <typename T>
__global__ void SoftmaxKernelWithEltadd(T *qk_buf_, const T *bias_qk_,
                                        const int batch_size,
                                        const int head_num, const int seq_len,
                                        const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  assert(blockDim.x % 32 == 0);

146 147 148 149
  float tmp = threadIdx.x < seq_len
                  ? static_cast<float>(qk_buf_[threadIdx.x + qk_offset] +
                                       bias_qk_[threadIdx.x + qk_offset])
                  : -1e20f;
150 151
  float max_val = blockReduceMax<float>(tmp, mask);

152
  float qk_tmp = threadIdx.x < seq_len ? __expf(tmp - max_val) : 0.0f;
153 154 155
  float sum_val = blockReduceSum<float>(qk_tmp, mask);

  if (threadIdx.x < seq_len)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    qk_buf_[threadIdx.x + qk_offset] = (T)(qk_tmp / sum_val);
}

template <typename T>
__global__ void SoftmaxKernelWithEltadd2(T *qk_buf_, const T *bias_qk_,
                                         const int batch_size,
                                         const int head_num, const int seq_len,
                                         const unsigned mask) {
  int qk_offset = blockIdx.x * seq_len;
  int idx = threadIdx.x;
  assert(blockDim.x % 32 == 0);

  float2 tmp =
      idx < seq_len
          ? ToFloat2<T>(qk_buf_[idx + qk_offset] + bias_qk_[idx + qk_offset])
          : make_float2(-1e20f, -1e20f);
  float max_val = blockReduceMax<float>(max(tmp.x, tmp.y), mask);
  float2 qk_tmp = idx < seq_len ? make_float2(__expf(tmp.x - max_val),
                                              __expf(tmp.y - max_val))
                                : make_float2(0.f, 0.f);
  float sum_val = blockReduceSum<float>(qk_tmp.x + qk_tmp.y, mask) + 1e-6f;

  if (idx < seq_len) {
    qk_buf_[idx + qk_offset] =
        FloatsToPair<T>(qk_tmp.x / sum_val, qk_tmp.y / sum_val);
  }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
}

template <typename T>
inline void MatMulWithHeadQK(const platform::CUDADeviceContext &context,
                             int head_num, int seq_len, int size_per_head,
                             int batch_size, bool q_trans, bool k_trans,
                             T *q_buf_, T *k_buf_, T *qk_buf_, const T *bias_qk,
                             T alpha, T beta) {
  CBLAS_TRANSPOSE transA = !q_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !k_trans ? CblasNoTrans : CblasTrans;

  typedef typename CUDATypeTraits<T>::TYPE run_type;
  auto blas =
      operators::math::GetBlas<platform::CUDADeviceContext, run_type>(context);
  auto stream = context.stream();

  blas.BatchedGEMM(
      transA, transB, seq_len, seq_len, size_per_head,
      static_cast<run_type>(alpha), reinterpret_cast<run_type *>(q_buf_),
      reinterpret_cast<run_type *>(k_buf_), static_cast<run_type>(beta),
      reinterpret_cast<run_type *>(qk_buf_), batch_size * head_num,
      seq_len * size_per_head, seq_len * size_per_head);

  int grid = batch_size * head_num * seq_len;
  int block = seq_len;

  // Align block to 32, also limit seq_len to max block size.
  PADDLE_ENFORCE_LE(seq_len, 1024, platform::errors::InvalidArgument(
                                       "seq_len should <= 1024, "
                                       "but received seq_len is:%d",
                                       seq_len));
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  if (seq_len % 2 == 0) {
    block = (seq_len <= 64) ? 32 : ((seq_len + 63) / 64) * 32;
#ifdef SUPPORTS_CUDA_FP16
    if (std::is_same<T, float>::value) {
#endif
      SoftmaxKernelWithEltadd2<float2><<<grid, block, 0, stream>>>(
          reinterpret_cast<float2 *>(qk_buf_),
          reinterpret_cast<const float2 *>(bias_qk), batch_size, head_num,
          seq_len / 2, FINAL_MASK);
#ifdef SUPPORTS_CUDA_FP16
    } else {
      SoftmaxKernelWithEltadd2<__half2><<<grid, block, 0, stream>>>(
          reinterpret_cast<__half2 *>(qk_buf_),
          reinterpret_cast<const __half2 *>(bias_qk), batch_size, head_num,
          seq_len / 2, FINAL_MASK);
    }
#endif
  } else {
    block = (seq_len <= 32) ? 32 : ((seq_len + 31) / 32) * 32;
    SoftmaxKernelWithEltadd<T><<<grid, block, 0, stream>>>(
        qk_buf_, bias_qk, batch_size, head_num, seq_len, FINAL_MASK);
  }
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

template <typename T>
inline void MatMulWithHeadQKV(const platform::CUDADeviceContext &context,
                              int head_num, int seq_len, int size_per_head,
                              int batch_size, bool qk_trans, bool v_trans,
                              T *v_buf_, const T *qk_buf_, T *dst, T alpha,
                              T beta) {
  int m = batch_size * seq_len;
  int k = head_num * size_per_head;

  typedef typename CUDATypeTraits<T>::TYPE run_type;
  auto blas =
      operators::math::GetBlas<platform::CUDADeviceContext, run_type>(context);
  auto stream = context.stream();
  CBLAS_TRANSPOSE transA = !qk_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !v_trans ? CblasNoTrans : CblasTrans;

  blas.BatchedGEMM(
      transA, transB, seq_len, size_per_head, seq_len,
      static_cast<run_type>(alpha), reinterpret_cast<const run_type *>(qk_buf_),
      reinterpret_cast<run_type *>(v_buf_), static_cast<run_type>(beta),
      reinterpret_cast<run_type *>(dst), batch_size * head_num,
      seq_len * seq_len, seq_len * size_per_head);
}

template <typename T>
void MultiHeadGPUComputeFunctor<T>::operator()(
    const platform::CUDADeviceContext &dev_ctx, int batch, int seq_len,
    int head_num, int head_size, T *qkptr, const T *bias_qk_ptr, T *tptr,
    T alpha, T beta) {
  auto stream = dev_ctx.stream();
  const int tsize = batch * head_num * seq_len * head_size;

  T *qptr = tptr;
  T *kptr = qptr + tsize;
  T *vptr = kptr + tsize;
  // batch gemm stride, softmaxwithscale.
  MatMulWithHeadQK<T>(dev_ctx, head_num, seq_len, head_size, batch, false, true,
                      qptr, kptr, qkptr, bias_qk_ptr, alpha, beta);
  // batch gemm stride, transpose.
  MatMulWithHeadQKV<T>(dev_ctx, head_num, seq_len, head_size, batch, false,
                       false, vptr, qkptr, tptr, T(1.0), beta);
}

template class MultiHeadGPUComputeFunctor<float>;

#ifdef SUPPORTS_CUDA_FP16
template class MultiHeadGPUComputeFunctor<half>;
#endif

template <typename T, unsigned TPB>
__global__ void SkipLayerNormSmallKernel(int num, int hidden, const T *input1,
                                         const T *input2, T *output,
                                         const float *scale, const float *bias,
                                         float eps) {
  const T rld = T(1) / T(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
  kvp<T> thread_data(0, 0);
  const int idx = offset + threadIdx.x;
  T val = 0;
  if (threadIdx.x < hidden) {
    val = input1[idx] + input2[idx];
    const T rldval = rld * val;
    thread_data = pair_sum(thread_data, kvp<T>(rldval, rldval * val));
  }
  LayerNormSmall<T, TPB>(val, thread_data, hidden, idx, bias, scale, output,
                         eps);
}

template <typename T, unsigned TPB>
__global__ void SkipLayerNormKernel(int num, int hidden, const T *input1,
                                    const T *input2, T *output,
                                    const float *scale, const float *bias,
                                    float eps) {
  const T rld = T(1) / T(hidden);
  const int offset = blockIdx.x * hidden;
  cub::Sum pair_sum;
  kvp<T> thread_data(0, 0);

  for (int it = threadIdx.x; it < hidden; it += TPB) {
    const int idx = offset + it;
    const T val = input1[idx] + input2[idx];
    const T rldval = rld * val;
    thread_data = pair_sum(thread_data, kvp<T>(rldval, rldval * val));
    output[idx] = val;
  }
  LayerNorm<T, TPB>(thread_data, hidden, offset, bias, scale, output, eps);
}

template <typename T>
void SkipLayerNormFunctor<T>::operator()(const int num, const int hidden,
                                         const T *input1, const T *input2,
                                         const float *scale, const float *bias,
                                         T *output, T eps,
                                         cudaStream_t stream) {
  int block = num / hidden;
  if (hidden <= 32) {
    const int threads = 32;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else if (hidden <= 128) {
    const int threads = 128;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else if (hidden == 384) {
    const int threads = 384;
    SkipLayerNormSmallKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  } else {
    const int threads = 256;
    SkipLayerNormKernel<T, threads><<<block, threads, 0, stream>>>(
        num, hidden, input1, input2, output, scale, bias, eps);
  }
}

template class SkipLayerNormFunctor<float>;

#ifdef SUPPORTS_CUDA_FP16
template class SkipLayerNormFunctor<half>;
#endif

}  // namespace math
}  // namespace operators
}  // namespace paddle