api_base.py 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
16
import collections
17

18
PREFIX_TENSOR_NAME = 'input_'
19 20 21 22
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
23

24 25 26 27 28 29 30 31 32 33 34 35
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
36
        #     out_size_expr : [], expression for getting size of vector<Tensor>
37
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
38 39 40 41 42 43 44
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
45
            if 'infer_meta' in api_item_yaml:
46 47
                self.infer_meta = self.parse_infer_meta(
                    api_item_yaml['infer_meta'])
48 49
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
50
            self.inplace_map, self.view_map = {}, {}
51 52 53 54

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

55 56 57
    def get_api_func_name(self):
        return self.api

58 59 60 61
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
62
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
63 64 65 66 67
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
68 69 70
                input_args.append(
                    inplace_type_map[self.inputs['input_info'][name]] + ' ' +
                    name)
71 72 73 74 75 76 77 78 79 80 81 82
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
83

84 85 86 87 88 89 90 91
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
92

93
    def parse_args(self, api_name, api_item_yaml):
94 95 96 97 98
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
99 100 101
        inputs, attrs = self.parse_input_and_attr(api_name,
                                                  api_item_yaml['args'],
                                                  optional_vars)
102
        output_type_list, output_names, out_size_expr = self.parse_output(
103 104 105 106
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
107 108
            'out_size_expr': out_size_expr
        }, optional_vars
109

110
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
111 112 113 114 115 116 117
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
118 119 120 121
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
122
        attr_types_map = {
123
            'IntArray': 'const IntArray&',
124
            'Scalar': 'const Scalar&',
125 126 127 128
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
129
            'Scalar[]': 'const std::vector<phi::Scalar>&',
130
            'int': 'int',
131 132
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
133 134 135
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
136
            'float[]': 'const std::vector<float>&',
137 138
            'double': 'double',
            'bool': 'bool',
139
            'str': 'const std::string&',
140
            'str[]': 'const std::vector<std::string>&',
141
            'Place': 'const Place&',
142 143
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
144
            'int64_t[]': 'const std::vector<int64_t>&',
Z
zhiboniu 已提交
145
            'int[]': 'const std::vector<int>&',
146 147
        }
        optional_types_trans = {
148
            'Tensor': 'const paddle::optional<Tensor>&',
149 150
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
151 152
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
153 154 155
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
156
            'Place': 'paddle::optional<const Place&>',
157
            'DataLayout': 'paddle::optional<DataLayout>',
158
            'DataType': 'paddle::optional<DataType>'
159 160
        }

161 162
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
163
            type_and_name = item.split(' ')
164 165
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
166 167 168
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
169 170 171 172 173
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

174 175 176
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

177 178 179 180 181 182 183 184
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
185 186 187
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
188 189 190 191 192 193 194 195
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

196 197 198
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

199 200 201 202 203
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

204
        return inputs, attrs
205 206

    def parse_output(self, api_name, output_config):
207

208
        def parse_output_item(output_item):
Z
zyfncg 已提交
209 210 211 212
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
213 214 215 216 217 218 219 220 221 222 223 224 225 226
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
227 228 229 230

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
231
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
232
            return [out_type], [out_name], [size_expr]
233 234 235
        else:
            out_type_list = []
            out_name_list = []
236
            out_size_expr_list = []
237
            for output_item in temp_list:
238
                out_type, out_name, size_expr = parse_output_item(output_item)
239 240
                out_type_list.append(out_type)
                out_name_list.append(out_name)
241
                out_size_expr_list.append(size_expr)
242

243
            return out_type_list, out_name_list, out_size_expr_list
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
259
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
260 261 262 263 264
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
265
            'data_type': None,
266 267
            'use_gpudnn': 'false',
            'dispatch': {}
268 269 270 271 272 273 274 275 276
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
277 278 279 280
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
281 282 283 284 285 286 287 288 289
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
290 291 292 293 294 295 296 297 298 299 300

            # check the tensor type
            for item in inputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

301 302 303 304 305 306
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

322
    # Override by child class
323
    def get_return_type(self, inplace_flag=False):
324 325 326
        return None

    def gene_api_declaration(self):
327 328 329 330 331
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
332 333
"""

334 335 336
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
337
            api_declaration = api_declaration + f"""
338
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
339 340 341 342
"""

        return api_declaration

343 344 345 346 347 348 349 350 351
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
352
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
384
            if attrs['attr_info'][attr_name][0] == 'const Place&':
385
                assert kernel['backend'] is not None, \
386
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
387 388 389 390 391 392 393 394 395 396 397
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
398
        kernel_select_code = self.gene_kernel_backend_select()
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
437
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
438 439 440 441 442
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
443
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
444
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
461
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
462 463 464 465 466 467 468 469 470 471 472 473 474
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

475
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
476 477 478 479
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

480 481
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
482 483 484 485 486
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
487 488 489 490 491
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
492
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
493
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
494 495 496 497
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""
498 499 500 501 502 503 504 505 506 507
                    param_code = param_code + param + "_metas, "
                elif self.inputs['input_info'][
                        param] == "const paddle::optional<std::vector<Tensor>>&":
                    meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
{code_indent}  paddle::optional<std::vector<const phi::MetaTensor*>> {param}_metas({param}_meta_vec.size());
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas->at(i) = &{param}_meta_vec[i];
{code_indent}  }}
"""
508 509
                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
510
                    param_code = param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), "
511
                else:
512 513 514
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
515 516 517 518 519 520 521 522 523
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

524 525 526 527 528 529
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
530
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
531 532 533 534 535 536 537
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
538 539 540 541
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
542

543 544
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
545
{code_indent}  phi::{infer_meta['func']}({param_code});
546 547
"""

548 549
    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
550 551
            'const Tensor&':
            'const phi::DenseTensor&',
552
            'const std::vector<Tensor>&':
553
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
554 555
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
556 557
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::DenseTensor>&',
558
            'const paddle::optional<std::vector<Tensor>>&':
559
            'const paddle::optional<std::vector<const phi::DenseTensor*>>&'
560
        }
561
        dense_out_trans_map = {
562 563
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
564
        }
565 566 567 568 569 570 571
        sr_input_trans_map = {
            'const Tensor&':
            'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::SelectedRows>&'
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
572 573 574 575 576 577 578 579 580 581
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
582
        input_name_tensor_map = collections.defaultdict(list)
583 584 585
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
586 587 588 589 590 591 592 593 594 595
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(input_name)] == 'dense':
                    trans_flag = "{}"
                    if input_name in self.data_transform['skip_transform']:
                        trans_flag = "{true}"
                    elif input_name in self.data_transform[
                            'support_trans_dtype']:
                        trans_flag = "{false, true}"
                    if input_name in self.optional_vars:
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                        if self.inputs['input_info'][
                                input_name] == "const paddle::optional<std::vector<Tensor>>&":
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True))
                            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name};
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_vec){{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::optional<std::vector<const phi::DenseTensor*>>({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}    for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}_vec->size(); ++i) {{
{code_indent}      {PREFIX_TENSOR_NAME}{input_name}->at(i) = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}    }}
{code_indent}  }}"""
                        else:
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}", False))
                            input_tensor_code = input_tensor_code + f"""
613
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
614

615 616 617
                    else:
                        if self.inputs['input_info'][
                                input_name] == "const Tensor&":
618 619
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}", False))
620
                            input_tensor_code = input_tensor_code + f"""
621
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
622

623 624
                        elif self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
625 626
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True))
627
                            input_tensor_code = input_tensor_code + f"""
628
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
629 630 631 632 633
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

634 635 636 637
                        else:
                            # do nothing
                            pass
                else:  # input is selected_rows
638 639
                    input_name_tensor_map[input_name].append(
                        (f"{PREFIX_TENSOR_NAME}{input_name}", False))
640
                    input_tensor_code = input_tensor_code + f"""
641 642
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});
"""
643 644 645 646 647
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
648

649
                    else:
650 651 652 653 654 655 656
                        if self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
                            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name});
{code_indent}  const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;"""
                        else:
                            input_tensor_code = input_tensor_code + f"""
657
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
        input_tensor_code = input_tensor_code + f"""
{code_indent}  if(platform::RecordOpInfoSupplement::IsEnabled()){{"""
        single_tensor_names = []
        list_tensor_names = []
        for input_name, input_tensors in input_name_tensor_map.items():
            has_vector_tensor = False
            for input_tensor, is_vector in input_tensors:
                if is_vector is True:
                    has_vector_tensor = True
            if has_vector_tensor is False:
                single_tensor_names.append(input_name)
            else:
                list_tensor_names.append(input_name)
        if not single_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes;"""
        else:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes{{"""
            for input_name in single_tensor_names[:-1]:
                input_tensors = input_name_tensor_map[input_name]
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     {{"{input_name}", {{"""
                for input_tensor, _ in input_tensors[:-1]:
                    input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensor}).dims(),"""
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}},"""
            input_tensors = input_name_tensor_map[single_tensor_names[-1]]
            input_tensor_code = input_tensor_code + f"""            
{code_indent}     {{"{single_tensor_names[-1]}", {{"""
            for input_tensor, _ in input_tensors[:-1]:
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensor}).dims(),"""
            input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}}}};"""
        if list_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<phi::DDim> ddims_vec;"""
        for input_name in list_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     ddims_vec.clear();"""
            for input_tensor, is_vector in input_name_tensor_map[input_name]:
                if is_vector:
702 703 704 705 706 707 708 709 710 711
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}     if ({input_tensor[:-4]}){{
{code_indent}       ddims_vec.reserve({input_tensor[:-4]}->size());
{code_indent}       for (size_t i = 0; i < {input_tensor[:-4]}->size(); ++i) {{
{code_indent}         ddims_vec.emplace_back((*{input_tensor[:-4]}->at(i)).dims());
{code_indent}       }}
{code_indent}     }}"""
                    else:
                        input_tensor_code = input_tensor_code + f"""
712 713 714 715 716 717 718 719 720 721 722 723 724 725
{code_indent}     ddims_vec.reserve({input_tensor[:-4]}.size());
{code_indent}     for (size_t i = 0; i < {input_tensor[:-4]}.size(); ++i) {{
{code_indent}       ddims_vec.emplace_back((*{input_tensor[:-4]}[i]).dims());
{code_indent}     }}"""
                else:
                    input_tensor_code = input_tensor_code + f"""  
                  ddims_vec.emplace_back((*{input_tensor}).dims());
{code_indent}     """
            input_tensor_code = input_tensor_code + f"""
{code_indent}     input_shapes.emplace_back("{input_name}", ddims_vec);"""

        input_tensor_code = input_tensor_code + f"""
{code_indent}     platform::RecordOpInfoSupplement("{self.api}", input_shapes);
{code_indent}  }}"""
726
        kernel_args = ["*dev_ctx"]
727 728
        for param in kernel_param:
            if param in input_names:
729
                if param in self.optional_vars:
730
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
731
                else:
732
                    if self.inputs['input_info'][param] == "const Tensor&":
733
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
734
                    elif self.inputs['input_info'][
735
                            param] == "const std::vector<Tensor>&":
736
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
737 738 739
                    else:
                        # do nothing
                        pass
740 741 742
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(param)] == 'dense':
743
                    kernel_args_type_list.append(
744 745 746 747
                        dense_input_trans_map[input_infos[param]])
                else:  # input is selected_rows
                    kernel_args_type_list.append(
                        sr_input_trans_map[input_infos[param]])
748 749
            elif param in attr_names:
                # set attr for kernel_context
750 751 752
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
753 754 755 756
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append(
                        'const std::vector<phi::Scalar>&')
                    param = param
757
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
758 759
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
760
                else:
761 762
                    kernel_args_type_list.append(
                        self.attrs['attr_info'][param][0])
763
                kernel_args.append(param)
764
            elif isinstance(param, bool):
765
                kernel_args.append(str(param).lower())
766
            else:
767
                kernel_args.append(str(param))
768

769 770 771 772 773 774
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
            if kernel_tensor_type is None or kernel_tensor_type[1][i] == 'dense':
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
775 776 777

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

778
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
779

780 781
    # Override by child class
    def gene_return_code(self):
782
        return "return api_output;"
783

784
    # Override by child class
785
    def gene_output(self,
786 787 788
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
789
                    inplace_flag=False):
790 791
        return None, None, None

792 793
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
794
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
795 796
            kernel_dispatch, code_indent)
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
797
        outputs_args, kernel_output_names, output_create = self.gene_output(
798 799
            self.outputs['types'], out_tensor_type_list, code_indent,
            inplace_flag)
800 801 802 803 804
        fallback_kernel_output_trans = ""
        for kernel_out in outputs_args:
            fallback_kernel_output_trans += (f"""
{code_indent}    TransDataBackend({kernel_out}, kernel_backend, {kernel_out});"""
                                             )
Z
zyfncg 已提交
805
        cudnn_args = '' if self.kernel[
806
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
807
        return f"""
F
From00 已提交
808
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
809
{code_indent}  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
810
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
811
{code_indent}  const auto& kernel = kernel_result.kernel;
812
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
813
{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
814 815
{input_tensors}
{output_create}
816 817 818 819
{code_indent}  paddle::platform::RecordEvent *infer_shape_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    infer_shape_record_event = new paddle::platform::RecordEvent(\"{self.api} infer_meta\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
820
{self.gene_infer_meta(kernel_output_names, code_indent)}
821 822 823
{code_indent}  if(infer_shape_record_event != nullptr){{
{code_indent}    delete infer_shape_record_event;
{code_indent}  }}
824 825
{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
826 827 828 829
{code_indent}  paddle::platform::RecordEvent* kernel_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    kernel_record_event = new paddle::platform::RecordEvent(\"{self.api} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
830
{code_indent}    (*kernel_fn)({kernel_args}, {", ".join(outputs_args)});
831 832
{code_indent}  if(kernel_record_event != nullptr){{
{code_indent}    delete kernel_record_event;
833 834 835
{code_indent}  }}
{code_indent}  if (kernel_result.has_fallback_cpu) {{
{fallback_kernel_output_trans}
836
{code_indent}  }}
837

838
{code_indent}  {self.gene_return_code()}"""
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in api.yaml."
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_dense_tensor()")
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_selected_rows()")
        return " && ".join(condition_list)
863

864 865 866 867 868 869
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
870

871
    def gene_base_api_code(self, inplace_flag=False):
872 873 874
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
875
        api_code = f"""
876
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
877
{self.gene_kernel_select()}
878
"""
879

880 881 882 883 884
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
                    kernel_name, inplace_flag)
885
            return api_code + f"""
886 887 888
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
889
}}
890
"""
891
        else:
892 893
            return api_code + self.gen_kernel_code(self.kernel['func'][0], '',
                                                   inplace_flag) + """
894
}
895 896
"""

897 898
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
899
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
900 901 902
  return {invoke_code};
}}"""

903 904 905
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
906
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
907 908
                if self.api[-1] == '_':
                    api_code = ""
909 910 911
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

912
        else:
913 914
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
915
                # Adjust the param whose name is same with api invoked.
916
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
917 918 919 920 921 922 923

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
924
                                     self.get_define_args())
925 926
            else:
                invoke_code = self.invoke
927 928
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)