cl_caller.cc 5.9 KB
Newer Older
Z
ZhenWang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/lite/opencl/cl_caller.h"
#include <string>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/opencl/cl_engine.h"
#include "paddle/fluid/lite/opencl/cl_helper.h"
#include "paddle/fluid/lite/opencl/cl_image.h"
#include "paddle/fluid/lite/opencl/cl_tool.h"
Z
ZhenWang 已提交
22
#include "paddle/fluid/lite/utils/string.h"
Z
ZhenWang 已提交
23 24 25

namespace paddle {
namespace lite {
Z
ZhenWang 已提交
26 27
static void CopyImageData(CLHelper* helper, const CLImage& cl_image,
                          float* out) {
Z
ZhenWang 已提交
28 29 30
  int width = cl_image.image_dims()[0];
  int height = cl_image.image_dims()[1];

Z
ZhenWang 已提交
31
  float* image_data = new float[height * width * 4];
Z
ZhenWang 已提交
32 33 34 35
  cl::Image* image = cl_image.cl_image();
  const std::array<size_t, 3> origin{0, 0, 0};
  const std::array<size_t, 3> region{static_cast<size_t>(width),
                                     static_cast<size_t>(height), 1};
Z
ZhenWang 已提交
36
  cl_int err = helper->OpenCLCommandQueue().enqueueReadImage(
Z
ZhenWang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
      *image, CL_TRUE, origin, region, 0, 0, image_data, nullptr, nullptr);
  CL_CHECK_ERRORS(err);

  auto* converter = cl_image.image_converter();
  converter->ImageToNCHW(image_data, out, cl_image.image_dims(),
                         cl_image.tensor_dims());

  delete[] image_data;
}

bool InitOpenCLEngine(std::string cl_path) {
  auto* engine = CLEngine::Global();
  engine->set_cl_path(cl_path);
  return engine->IsInitSuccess();
}

Z
ZhenWang 已提交
53
void elementwise_add(CLHelper* helper, const float* in, const DDim& in_dim,
C
Chunwei 已提交
54
                     const float* bias, const DDim& bias_dim, float* out,
Z
ZhenWang 已提交
55
                     const DDim& out_dim) {
Z
ZhenWang 已提交
56 57 58 59 60 61
  if (!(bias_dim.size() == 1 || bias_dim.size() == 4)) {
    LOG(FATAL) << "Error: bias dims is error";
    return;
  }
  auto kernel = bias_dim.size() == 1 ? helper->GetKernel("channel_add")
                                     : helper->GetKernel("elementwise_add");
Z
ZhenWang 已提交
62 63
  CLImage in_image;
  in_image.set_tensor_data(in, in_dim);
Z
ZhenWang 已提交
64
  in_image.InitNormalCLImage(helper->OpenCLContext());
Z
ZhenWang 已提交
65 66 67
  VLOG(3) << " --- Inpu image: " << in_image << " --- ";
  CLImage bias_image;
  bias_image.set_tensor_data(bias, bias_dim);
Z
ZhenWang 已提交
68
  bias_image.InitCLImage(helper->OpenCLContext());
Z
ZhenWang 已提交
69 70
  VLOG(3) << " --- Bias image: " << bias_image << " --- ";
  CLImage out_image;
Z
ZhenWang 已提交
71
  out_image.InitEmptyImage(helper->OpenCLContext(), out_dim);
Z
ZhenWang 已提交
72 73 74 75 76 77 78
  cl_int status;
  status = kernel.setArg(0, *in_image.cl_image());
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(1, *bias_image.cl_image());
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(2, *out_image.cl_image());
  CL_CHECK_ERRORS(status);
Z
ZhenWang 已提交
79 80 81 82 83 84

  if (bias_dim.size() == 1) {
    int tensor_w = in_dim[3];
    status = kernel.setArg(3, tensor_w);
    CL_CHECK_ERRORS(status);
  }
Z
ZhenWang 已提交
85 86 87
  size_t width = in_image.ImageWidth();
  size_t height = in_image.ImageHeight();
  auto global_work_size = cl::NDRange{width, height};
Z
ZhenWang 已提交
88
  status = helper->OpenCLCommandQueue().enqueueNDRangeKernel(
Z
ZhenWang 已提交
89 90 91
      kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr);
  CL_CHECK_ERRORS(status);

Z
ZhenWang 已提交
92 93
  status = helper->OpenCLCommandQueue().finish();
  CL_CHECK_ERRORS(status);
Z
ZhenWang 已提交
94
  VLOG(3) << " --- Out image: " << out_image << " --- ";
Z
ZhenWang 已提交
95
  CopyImageData(helper, out_image, out);
Z
ZhenWang 已提交
96 97
}

Z
ZhenWang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
void pool(CLHelper* helper, const std::string pooling_type, const int pad_h,
          const int pad_w, const int stride_h, const int stride_w,
          const int ksize_h, const int ksize_w, const float* in,
          const DDim& in_dim, float* out, const DDim& out_dim) {
  auto kernel =
      helper->GetKernel(string_format("pool_%s", pooling_type.c_str()));
  CLImage in_image;
  in_image.set_tensor_data(in, in_dim);
  in_image.InitNormalCLImage(helper->OpenCLContext());
  VLOG(3) << " --- Inpu image: " << in_image << " --- ";
  CLImage out_image;
  out_image.InitEmptyImage(helper->OpenCLContext(), out_dim);
  auto global_work_size = helper->DefaultWorkSize(out_image);
  auto* in_converter =
      dynamic_cast<CLImageConverterNormal*>(in_image.image_converter());
  auto* out_converter =
      dynamic_cast<CLImageConverterNormal*>(out_image.image_converter());
  const int in_height = in_converter->HeightOfOneBlock();
  const int in_width = in_converter->WidthOfOneBlock();
  const int out_height = out_converter->HeightOfOneBlock();
  const int out_width = out_converter->WidthOfOneBlock();
  cl_int status;
  status = kernel.setArg(0, in_height);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(1, in_width);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(2, out_height);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(3, out_width);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(4, pad_h);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(5, pad_w);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(6, stride_h);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(7, stride_w);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(8, ksize_h);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(9, ksize_w);
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(10, *in_image.cl_image());
  CL_CHECK_ERRORS(status);
  status = kernel.setArg(11, *out_image.cl_image());
  CL_CHECK_ERRORS(status);

  status = helper->OpenCLCommandQueue().enqueueNDRangeKernel(
      kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr);
  CL_CHECK_ERRORS(status);

  status = helper->OpenCLCommandQueue().finish();
  CL_CHECK_ERRORS(status);
  VLOG(3) << " --- Out image: " << out_image << " --- ";
  CopyImageData(helper, out_image, out);
}

Z
ZhenWang 已提交
155 156
}  // namespace lite
}  // namespace paddle