test_einsum_v2.py 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import contextlib
import unittest
import paddle
from paddle.fluid import core

import os
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
os.environ['FLAGS_new_einsum'] = "1"


def error_trans(func, *args, **kargs):
    """ 
    transport C++ exception into Python exception. 
    because einsum_v2 raise different exception with einsum_v1.
    """
    try:
        out = func(*args, **kargs)
    except ValueError as e:
        if "Same label have different shapes" in str(e):
            raise AssertionError("Invalid operands: label i "
                                 "corresponds to non-broadcastable dimensions.")


class TestErrors(unittest.TestCase):
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def setUp(self):
        pass

    def test_diagonalize_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('...ii->...i', a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('i...i', a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('i...i->i...', a)

    def test_param_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(
                AssertionError,
            ("Required at least one operand in Einsum API, but received 0 ")):
            paddle.einsum('ijk')
64 65 66
        with self.assertRaisesRegex(
                AssertionError,
            ('Invalid equation: multiple `->` were found.')):
67
            paddle.einsum('i -> j -> k', a)
68 69 70 71
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 3 segments in the label equation.")):
72
            paddle.einsum('i,j,k', a, a)
73 74 75 76
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 1 segments in the label equation.")):
77
            paddle.einsum('ij -> k', a, a)
78 79 80 81
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 1, "
             "but found 2 segments in the label equation.")):
82
            paddle.einsum('i, -> k', a)
83 84 85
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string '' misses dimensions.")):
86
            paddle.einsum('->', a)
87 88 89
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string 'i' misses dimensions.")):
90
            paddle.einsum('i', a)
91 92 93
        with self.assertRaisesRegex(
                AssertionError, ("Invalid equation: _ is not a valid label, "
                                 "which should be letters.")):
94
            paddle.einsum('i_', a)
95 96 97
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
98
            paddle.einsum('i..j', a)
99 100 101
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
102
            paddle.einsum('...k...', a)
103 104 105
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: missing ellipsis in output labels.")):
106
            paddle.einsum('i...->i', a)
107 108 109
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: duplicate output labels are found.")):
110
            paddle.einsum('i...->i...i', a)
111 112 113 114
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid operands: label i "
             "corresponds to non-broadcastable dimensions.")):
115 116 117 118
            error_trans(paddle.einsum, 'ij...,ji...', a, a)


class TestEinsum(unittest.TestCase):
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    @classmethod
    def setUpClass(cls):
        np.random.seed(12345)

        cls.TEST_SAMPLES = {
            "a": np.random.rand(1, 1),
            "b": np.random.rand(1),
            "x": np.random.rand(5),
            "y": np.random.rand(7),
            "A": np.random.rand(4, 5),
            "B": np.random.rand(2, 5),
            "C": np.random.rand(3, 7),
            "D": np.random.rand(3, 4, 5),
            "E": np.random.rand(3, 5, 2),
            "F": np.random.rand(2, 4, 5, 3),
            "G": np.random.rand(4, 2, 5),
            "H": np.random.rand(3, 2, 4),
            "I": np.random.rand(2, 2),
            "J": np.random.rand(1, 3, 5),
            "K": np.random.rand(1, 2, 3, 4),
        }

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
153
            np.allclose(actual, expect, rtol=rtol, atol=atol),
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def setUp(self):
        self.sample = {"paradigm": "i->", "data": ["x"]}

    def test_forward(self):
        operands = [
            TestEinsum.TEST_SAMPLES[operand] for operand in self.sample["data"]
        ]
        expected_result = np.einsum(self.sample["paradigm"], *operands)
        equation = self.sample["paradigm"]

        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)

        with paddle.fluid.dygraph.guard(self._get_place(force_to_use_cpu=True)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)


class TestEinsumVectorDot(TestEinsum):
180

181 182 183 184 185
    def setUp(self):
        self.sample = {"paradigm": "i,i->", "data": ["x", "x"]}


class TestEinsumVectorMul(TestEinsum):
186

187 188 189 190 191
    def setUp(self):
        self.sample = {"paradigm": "i,i->i", "data": ["x", "x"]}


class TestEinsumVectorOuter(TestEinsum):
192

193 194 195 196 197
    def setUp(self):
        self.sample = {"paradigm": "i,j->ij", "data": ["x", "y"]}


class TestEinsumMatrixTranspose(TestEinsum):
198

199 200 201 202 203
    def setUp(self):
        self.sample = {"paradigm": "ij->ji", "data": ["A"]}


class TestEinsumMatrixRowSum(TestEinsum):
204

205 206 207 208 209
    def setUp(self):
        self.sample = {"paradigm": "ij->j", "data": ["A"]}


class TestEinsumMatrixColSum(TestEinsum):
210

211 212 213 214 215
    def setUp(self):
        self.sample = {"paradigm": "ij->i", "data": ["A"]}


class TestEinsumMatrixEleMul(TestEinsum):
216

217 218 219 220 221
    def setUp(self):
        self.sample = {"paradigm": "ij,ij->ij", "data": ["A", "A"]}


class TestEinsumDegenerateMatrixVecMul(TestEinsum):
222

223 224 225 226 227
    def setUp(self):
        self.sample = {"paradigm": "ij,j", "data": ["a", "b"]}


class TestEinsumMatrixVecMul(TestEinsum):
228

229 230 231 232 233
    def setUp(self):
        self.sample = {"paradigm": "ij,j->i", "data": ["A", "x"]}


class TestEinsumMatrixMul(TestEinsum):
234

235 236 237 238 239
    def setUp(self):
        self.sample = {"paradigm": "ij,kj->ik", "data": ["A", "B"]}


class TestEinsumMatrixOuter(TestEinsum):
240

241 242 243 244 245
    def setUp(self):
        self.sample = {"paradigm": "ij,kl->ijkl", "data": ["A", "C"]}


class TestEinsumTensorBMM(TestEinsum):
246

247 248 249 250 251
    def setUp(self):
        self.sample = {"paradigm": "bij,bjk->bik", "data": ["D", "E"]}


class TestEinsumTensorContract1(TestEinsum):
252

253 254 255 256 257
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->i", "data": ["D", "A"]}


class TestEinsumTensorContract2(TestEinsum):
258

259 260 261 262 263
    def setUp(self):
        self.sample = {"paradigm": "ijk,lk->ijl", "data": ["D", "B"]}


class TestEinsumTensorContract3(TestEinsum):
264

265 266 267 268 269
    def setUp(self):
        self.sample = {"paradigm": "abcd,dfg->abcfg", "data": ["F", "D"]}


class TestEinsumTensorContract4(TestEinsum):
270

271 272 273 274 275
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ik", "data": ["D", "A"]}


class TestEinsumTensorContract5(TestEinsum):
276

277 278 279 280 281
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ij", "data": ["D", "A"]}


class TestEinsumTensorContract6(TestEinsum):
282

283 284 285 286 287
    def setUp(self):
        self.sample = {"paradigm": "ik, ijk->j", "data": ["A", "G"]}


class TestEinsumTensorContract7(TestEinsum):
288

289 290 291 292 293
    def setUp(self):
        self.sample = {"paradigm": "ijk, ik->jk", "data": ["G", "A"]}


class TestEinsumEllipsis1(TestEinsum):
294

295 296 297 298 299
    def setUp(self):
        self.sample = {"paradigm": "i...->...", "data": ["G"]}


class TestEinsumEllipsis2(TestEinsum):
300

301 302 303 304 305
    def setUp(self):
        self.sample = {"paradigm": "ij,...i->j...", "data": ["A", "H"]}


class TestEinsumEllipsis3(TestEinsum):
306

307 308 309 310 311
    def setUp(self):
        self.sample = {"paradigm": "k...,jk", "data": ["F", "I"]}


class TestEinsumTestEinsumBilinear(TestEinsum):
312

313 314 315 316 317
    def setUp(self):
        self.sample = {"paradigm": "bn,anm,bm->ba", "data": ["B", "E", "I"]}


class TestEinsumTestEinsumOthers1(TestEinsum):
318

319 320 321 322 323
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->kmn", "data": ["F", "H"]}


class TestEinsumTestEinsumOthers2(TestEinsum):
324

325 326 327 328 329
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->ijn", "data": ["F", "H"]}


class TestEinsumBatch1(TestEinsum):
330

331 332 333 334 335
    def setUp(self):
        self.sample = {"paradigm": "blq,bhlk->bhlqk", "data": ["J", "K"]}


class TestNumpyTests(unittest.TestCase):
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def setUp(self):
        pass

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
351
            np.allclose(actual, expect, rtol=rtol, atol=atol),
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def check_output(self, eqn, *ops):
        expect = np.einsum(eqn, *ops)
        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(op) for op in ops]
            actual = paddle.einsum(eqn, *pd_operands)
            self.check_output_equal(actual.numpy(), expect)

    def test_sums(self):
        for n in range(1, 17):
            a = np.arange(n).astype('float')
            self.check_output("i->", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("...i->...", a)

        for n in range(1, 17):
            a = np.arange(2 * n).reshape(2, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(3 * n).reshape(3, n).astype('float')
            b = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("..., ...", a, b)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("...i, ...i", a, b)

        for n in range(1, 11):
            a = np.arange(n * 3 * 2).reshape(n, 3, 2).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("i..., i...", a, b)

        for n in range(1, 17):
            a = (np.arange(3) + 1).astype('float')
            b = (np.arange(n) + 1).astype('float')
            self.check_output("i,j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ij, j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ji,j", a.T, b.T)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n * 6).reshape(n, 6).astype('float')
            self.check_output("ij,jk", a, b)

        a = np.arange(12).reshape(3, 4).astype('float')
        b = np.arange(20).reshape(4, 5).astype('float')
        c = np.arange(30).reshape(5, 6).astype('float')
        self.check_output("ij,jk,kl", a, b, c)

        a = np.arange(60).reshape(3, 4, 5).astype('float')
        b = np.arange(24).reshape(4, 3, 2).astype('float')
        self.check_output("ijk, jil -> kl", a, b)

        for n in range(1, 25):
            a = np.arange(n).astype('float')
            self.check_output("...,...", a, a)
            self.check_output("i,i", a, a)

        # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #p = np.ones((10, 2)).astype('float')
        #q = np.ones((1, 2)).astype('float')
        #self.check_output('ij,ij->j', p, q)

        # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #x = np.array([2., 3.]).astype('float')
        #y = np.array([4.]).astype('float')
        #self.check_output("i, i", x, y)

        # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #p = np.ones((1, 5)) / 2
        #q = np.ones((5, 5)) / 2
        #self.check_output("...ij,...jk->...ik", p, p)
        #self.check_output("...ij,...jk->...ik", p, q)

        x = np.eye(2).astype('float')
        y = np.ones(2).astype('float')
        self.check_output("ji,i->", x, y)
        self.check_output("i,ij->", y, x)
        self.check_output("ij,i->", x, y)

    def test_large_nops(self):
        pass
        # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #a = np.arange(4 * 3 * 1 * 4).reshape(4, 3, 1, 4).astype('float')
        #self.check_output('a...b,b...c,c...d', a, a, a)
        #self.check_output('a...b,b...c,c...a', a, a, a)
        #self.check_output('a...b,b...c,c...a', a, a, a)
        #self.check_output('...ab,...ba,...ab,...ab', a, a, a, a)

    def test_static_graph(self):
        paddle.enable_static()
        fluid = paddle.fluid
        if fluid.core.is_compiled_with_cuda():
            self.place = fluid.CUDAPlace(0)
        else:
            self.place = fluid.CPUPlace()
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            a = paddle.static.data(name='a',
                                   shape=[3, None, None, None],
                                   dtype='float')
            b = paddle.static.data(name='b',
                                   shape=[2, None, None, None],
                                   dtype='float')
            c = paddle.static.data(name='c',
                                   shape=[None, None, 2, None],
                                   dtype='float')
            d = paddle.static.data(name='d',
                                   shape=[None, None, 5],
                                   dtype='float')
            e = paddle.static.data(name='e',
                                   shape=[None, 2, None],
                                   dtype='float')
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

            outs = []
            outs.append(paddle.einsum("ibnd,jbnd->bnij", a, b))
            outs.append(paddle.einsum('...ik, ...j', c, d))
            outs.append(paddle.einsum('...kj, ...ik', d, e))
            outs.append(paddle.einsum('ijk..., ikj', c, e))
            outs.append(paddle.einsum('ijk..., ikj->...ij', c, e))
        exe = fluid.Executor(self.place)
        exe.run(startup)
        a = np.arange(72).reshape(3, 2, 3, 4).astype('float')
        b = np.arange(48).reshape(2, 2, 3, 4).astype('float')
        c = np.arange(48).reshape(2, 3, 2, 4).astype('float')
        d = np.arange(30).reshape(2, 3, 5).astype('float')
        e = np.arange(12).reshape(2, 2, 3).astype('float')
        feeds = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e}
        actual = exe.run(main, feed=feeds, fetch_list=[outs])
        expect = []
        expect.append(np.einsum("ibnd,jbnd->bnij", a, b))
        expect.append(np.einsum('...ik, ...j', c, d))
        expect.append(np.einsum('...kj, ...ik', d, e))
        expect.append(np.einsum('ijk..., ikj', c, e))
        expect.append(np.einsum('ijk..., ikj->...ij', c, e))
        for a, e in zip(actual, expect):
            self.check_output_equal(a, e)


511
class TestStaticGraphShape(unittest.TestCase):
512

513 514 515 516 517 518 519 520 521 522 523 524 525
    def setUp(self):
        paddle.enable_static()

    def tearDown(self):
        paddle.disable_static()

    def test_shape(self):
        A = paddle.static.data(name='x', shape=[-1])
        B = paddle.static.data(name='y', shape=[384])
        C = paddle.einsum('i,d->id', A, B)
        self.assertEqual(C.shape, (-1, 384))


526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
class TestBF16(unittest.TestCase):
    """
    EinsumOp support bfloat16 type, add unittest here for the correctness.
    """

    def test_shape(self):
        cuda_major = paddle.version.cuda().split('.')[0].strip()
        if paddle.is_compiled_with_cuda() and int(cuda_major) >= 11:
            """ MatmulKernel support bfloat16 only if cuda_major > 11.0.
            """
            A = paddle.to_tensor(np.array([1.0, 2.0])).astype(paddle.bfloat16)
            A = A.cuda()
            B = paddle.to_tensor(np.array([2.0, 3.0])).astype(paddle.bfloat16)
            B = B.cuda()
            C = paddle.einsum('i,i->', A, B)
            self.assertEqual(C.item(), 8.0)


544
if __name__ == "__main__":
545
    unittest.main()