test_learning_rate_scheduler.py 15.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import copy
18
import math
19
import numpy as np
20
import unittest
21

22
import paddle.fluid as fluid
23
import paddle.fluid.layers as layers
24
import paddle.fluid.framework as framework
Q
QI JUN 已提交
25
import paddle.fluid.core as core
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32


def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
Y
Yu Yang 已提交
33
    exponent = global_step / decay_steps
Q
Qiao Longfei 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * decay_rate**exponent


def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
    exponent = float(global_step) / float(decay_steps)
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * math.exp(-1 * decay_rate * exponent)


def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False):
    temp = float(global_step) / float(decay_steps)
    if staircase:
        temp = math.floor(temp)
    return learning_rate / (1 + decay_rate * temp)


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    if cycle:
        div = math.ceil(global_step / float(decay_steps))
        if div == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        global_step = min(global_step, decay_steps)
    return (learning_rate - end_learning_rate) * \
           ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate


def piecewise_decay(global_step, boundaries, values):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if global_step < boundaries[i]:
            return values[i]
    return values[len(values) - 1]
Q
Qiao Longfei 已提交
84

85

S
shippingwang 已提交
86 87 88 89 90 91 92
def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
    cur_epoch = math.floor(global_step / step_each_epoch)
    decayed_lr = learning_rate * 0.5 * (
        math.cos(cur_epoch * math.pi / epochs) + 1)
    return decayed_lr


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def noam_decay(global_step, d_model, warmup_steps, learning_rate=1.0):
    a = math.pow(global_step, -0.5)
    b = math.pow(warmup_steps, -1.5) * global_step
    decayed_lr = learning_rate * math.pow(d_model, -0.5) * min(a, b)

    return decayed_lr


class TestNoamLearningRateDecayDygraphMode(unittest.TestCase):
    def test_dygraph_mode(self):
        with fluid.dygraph.guard():
            d_model = 0.01
            warmup_steps = 200
            learning_rate = 2.0
            lr = fluid.layers.noam_decay(d_model, warmup_steps, learning_rate)
            for step in range(5):
                step += 1
                right_result = noam_decay(step, d_model, warmup_steps,
                                          learning_rate)
                fluid_result = lr()

                self.assertAlmostEqual(
                    right_result,
                    fluid_result[0],
                    msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
                    format(step, right_result, fluid_result[0]))


121 122
class TestLearningRateDecay(unittest.TestCase):
    def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
Q
QI JUN 已提交
123 124 125 126 127 128 129 130 131
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
                                        kwargs)

    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
132 133
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
Q
QI JUN 已提交
134

135
        with fluid.program_guard(main_prog, startup_prog):
136
            decayed_lr = fluid_decay_fn(**kwargs)
Q
Qiao Longfei 已提交
137 138 139 140

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

141
        exe.run(startup_prog)
142

Q
Qiao Longfei 已提交
143
        for step in range(10):
144 145 146
            # Step of NoamDecay starts from 1.
            if python_decay_fn.__name__ == 'noam_decay':
                step += 1
147
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
Y
Yu Yang 已提交
148 149 150 151 152
            python_decayed_lr = python_decay_fn(
                global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
153
                msg='Failed lr scheduler is {0}, step {1}, Python result is {2}, Fluid result is {3}'.
Y
Yu Yang 已提交
154
                format(python_decay_fn.__name__,
155
                       str(step), str(python_decayed_lr), str(lr_val[0])))
Q
Qiao Longfei 已提交
156 157

    def test_decay(self):
158 159 160 161 162 163 164 165 166
        common_kwargs_true = {
            "learning_rate": 1.0,
            "decay_steps": 5,
            "decay_rate": 0.5,
            "staircase": True
        }
        common_kwargs_false = copy.deepcopy(common_kwargs_true)
        common_kwargs_false["staircase"] = False

Q
Qiao Longfei 已提交
167
        decay_fns = [
168 169 170 171 172 173
            (exponential_decay, layers.exponential_decay, common_kwargs_true),
            (exponential_decay, layers.exponential_decay, common_kwargs_false),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
            (inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
            (inverse_time_decay, layers.inverse_time_decay,
174
             common_kwargs_false),
175
            (polynomial_decay, layers.polynomial_decay, {
176 177 178 179
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": True
            }),
180
            (polynomial_decay, layers.polynomial_decay, {
181 182 183 184
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": False
            }),
185
            (piecewise_decay, layers.piecewise_decay, {
186 187 188
                "boundaries": [3, 6, 9],
                "values": [0.1, 0.2, 0.3, 0.4]
            }),
S
shippingwang 已提交
189 190 191 192 193
            (cosine_decay, layers.cosine_decay, {
                "learning_rate": 0.1,
                "step_each_epoch": 100,
                "epochs": 120
            }),
194 195 196 197 198
            (noam_decay, layers.noam_decay, {
                "d_model": 0.01,
                "warmup_steps": 200,
                "learning_rate": 2.0
            }),
Q
Qiao Longfei 已提交
199 200
        ]

201
        for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
202
            print("class=" + self.__class__.__name__ + " decay_fn=" +
203
                  py_decay_fn.__name__ + " kwargs=" + str(kwargs))
Q
Qiao Longfei 已提交
204 205 206
            main_program = framework.Program()
            startup_program = framework.Program()
            with framework.program_guard(main_program, startup_program):
207
                self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
Q
Qiao Longfei 已提交
208 209


210 211 212 213 214 215 216 217 218 219 220 221 222
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
    linear_step = end_lr - start_lr
    decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
    return decayed_lr


class TestLinearWamrupLearningRateDecay(TestLearningRateDecay):
    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10
Q
qingqing01 已提交
223
        start_lr = 0.1 / 3.
224 225 226 227 228 229 230 231 232 233 234
        end_lr = 0.1

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(
                fluid_decay_fn(**kwargs), warmup_steps, start_lr, end_lr)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
235 236 237
            # Step of NoamDecay starts from 1.
            if fluid_decay_fn.__name__ == 'noam_decay':
                step += 1
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                python_decayed_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                python_decayed_lr = python_decay_fn(
                    global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
                msg='Test {0} Failed, step {1}, Python result is {2}, Fluid result is {3}'.
                format(python_decay_fn.__name__,
                       str(step), str(python_decayed_lr), str(lr_val[0])))


Q
qingqing01 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
class TestLinearWamrupLearningRateDecayWithScalarInput(unittest.TestCase):
    def run_scalar_lr(self, place, lr, start_lr, end_lr):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(lr, warmup_steps, start_lr,
                                                 end_lr)

        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                expected_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                expected_lr = lr
            self.assertAlmostEqual(
                expected_lr,
                lr_val[0],
                msg='Test failed, step {0}, expected {1}, but got {2}'.format(
                    step, expected_lr, lr_val[0]))

    def test_scalar_lr(self):
        def run_places(lr, start_lr, end_lr):
            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for p in places:
                self.run_scalar_lr(p, lr, start_lr, end_lr)

        # float
        lr = 0.2
        start_lr = 0.1 / 3.
        end_lr = 0.2
        run_places(lr, start_lr, end_lr)

        # int end_lr
        lr = 2.
        start_lr = 0.1 / 3.
        end_lr = 1
        run_places(lr, start_lr, end_lr)

        # int
        lr = 1
        start_lr = 0
        end_lr = 1
        run_places(lr, start_lr, end_lr)


H
hong 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
class TestLinearWamrupLearningRateDecayDygraphMode(unittest.TestCase):
    def test_dygraph_mode(self):
        with fluid.dygraph.guard():
            lr = fluid.layers.polynomial_decay(
                learning_rate=1.0,
                decay_steps=10,
                end_learning_rate=0.0,
                power=1.0)
            lr = fluid.layers.linear_lr_warmup(
                learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0)

            right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
            for i in range(5):

                t = lr()

323 324
                self.assertTrue(
                    np.allclose((t.numpy())[0].item(), right_result[i]))
H
hong 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337


class TestLinearWamrupLearningRateDecayDygraphModeTypeCheck(unittest.TestCase):
    def test_dygraph_mode(self):
        with fluid.dygraph.guard():
            with self.assertRaises(TypeError):
                lr = fluid.layers.linear_lr_warmup(
                    learning_rate="fake_lr",
                    warmup_steps=2,
                    start_lr=0.0,
                    end_lr=1.0)


338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
                         var_list):
    def is_better(current, best, m, n):
        if m == 'min' and n == 'rel':
            return current < best - best * threshold
        elif m == 'min' and n == 'abs':
            return current < best - threshold
        elif m == 'max' and n == 'rel':
            return current > best + best * threshold
        else:  # mode == 'max' and epsilon_mode == 'abs':
            return current > best + threshold

    if var_list[2] > 0:
        var_list[2] -= 1
        return var_list[1]

    if is_better(loss, var_list[0], m, n):
        var_list[0] = loss
        var_list[3] = 0
    else:
        var_list[3] += 1
        if var_list[3] > patience:
            var_list[2] = cooldown
            var_list[3] = 0
            new_lr = var_list[1] * decay_rate
            var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]

    return var_list[1]


class TestReduceLROnPlateauDecay(unittest.TestCase):
    def test_dygraph_mode(self):
        with fluid.dygraph.guard():
            # the decay rate must be less than 1.0
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(
                    learning_rate=1.0, decay_rate=2.0)
            # the mode must be "min" or "max"
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(learning_rate=1.0, mode="test")
            # the threshold_mode must be "rel" or "abs"
            with self.assertRaises(ValueError):
                fluid.dygraph.ReduceLROnPlateau(
                    learning_rate=1.0, threshold_mode="test")

            base_lr = 1.0
            patience = 3
            cooldown = 1
            decay_rate = 0.5
            threshold = 1e-4
            linear = fluid.dygraph.Linear(10, 10)

            for m, n in zip(['min', 'max', 'min', 'max'],
                            ['rel', 'rel', 'abs', 'abs']):
                kwargs = {
                    'learning_rate': base_lr,
                    'decay_rate': decay_rate,
                    'threshold': threshold,
                    'verbose': True,
                    'patience': patience,
                    'cooldown': cooldown,
                    'mode': m,
                    'threshold_mode': n,
                    'eps': 1e-6
                }
                print("class=" + fluid.dygraph.ReduceLROnPlateau.__name__ +
                      " kwargs=" + str(kwargs))
                lr = fluid.dygraph.ReduceLROnPlateau(**kwargs)
                sgd = fluid.optimizer.SGD(learning_rate=lr,
                                          parameter_list=linear.parameters())

                best = float("-10000") if m == "max" else float("10000")
                expected_lr = 1.0
                cooldown_counter = 0
                num_bad_epochs = 0
                var_list = [best, expected_lr, cooldown_counter, num_bad_epochs]
                step_num = 0
                epoch_num = 0
                for epoch in range(30):
                    total_loss = 0

                    for batch_id in range(2):
                        step_num += 1
                        x = fluid.dygraph.to_variable(
                            np.array([step_num]).astype('float32'))
                        loss = layers.sin(x)
                        sgd.minimize(loss)
                        total_loss += loss

                    epoch_num += 1
                    # get expected lr from fluid
                    avg_loss = total_loss / 1
                    lr.step(avg_loss)
                    actual_lr = lr().numpy()[0]

                    # get expected lr form python
                    expected_lr = reduce_lr_on_plateau(decay_rate, threshold,
                                                       cooldown, patience, m, n,
                                                       avg_loss, var_list)
                    self.assertEqual(
                        expected_lr,
                        actual_lr,
                        msg='Failed reduce lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'.
                        format(epoch_num, expected_lr, actual_lr))


Q
Qiao Longfei 已提交
444 445
if __name__ == '__main__':
    unittest.main()