test_transforms.py 15.3 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import os
import tempfile
import cv2
import shutil
import numpy as np
21
from PIL import Image
L
LielinJiang 已提交
22

23 24
import paddle
from paddle.vision import get_image_backend, set_image_backend, image_load
25 26 27
from paddle.vision.datasets import DatasetFolder
from paddle.vision.transforms import transforms
import paddle.vision.transforms.functional as F
L
LielinJiang 已提交
28 29


30
class TestTransformsCV2(unittest.TestCase):
L
LielinJiang 已提交
31
    def setUp(self):
32 33
        self.backend = self.get_backend()
        set_image_backend(self.backend)
L
LielinJiang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47
        self.data_dir = tempfile.mkdtemp()
        for i in range(2):
            sub_dir = os.path.join(self.data_dir, 'class_' + str(i))
            if not os.path.exists(sub_dir):
                os.makedirs(sub_dir)
            for j in range(2):
                if j == 0:
                    fake_img = (np.random.random(
                        (280, 350, 3)) * 255).astype('uint8')
                else:
                    fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')
                cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img)

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def get_backend(self):
        return 'cv2'

    def create_image(self, shape):
        if self.backend == 'cv2':
            return (np.random.rand(*shape) * 255).astype('uint8')
        elif self.backend == 'pil':
            return Image.fromarray((np.random.rand(*shape) * 255).astype(
                'uint8'))

    def get_shape(self, img):
        if self.backend == 'pil':
            return np.array(img).shape

        return img.shape

L
LielinJiang 已提交
64 65 66 67 68 69 70 71 72 73 74
    def tearDown(self):
        shutil.rmtree(self.data_dir)

    def do_transform(self, trans):
        dataset_folder = DatasetFolder(self.data_dir, transform=trans)

        for _ in dataset_folder:
            pass

    def test_trans_all(self):
        normalize = transforms.Normalize(
75 76
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.120, 57.375], )
L
LielinJiang 已提交
77
        trans = transforms.Compose([
78
            transforms.RandomResizedCrop(224),
L
LielinJiang 已提交
79
            transforms.ColorJitter(
80 81 82 83
                brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4),
            transforms.RandomHorizontalFlip(),
            transforms.Transpose(),
            normalize,
L
LielinJiang 已提交
84 85 86 87
        ])

        self.do_transform(trans)

L
LielinJiang 已提交
88 89
    def test_normalize(self):
        normalize = transforms.Normalize(mean=0.5, std=0.5)
90
        trans = transforms.Compose([transforms.Transpose(), normalize])
L
LielinJiang 已提交
91 92
        self.do_transform(trans)

L
LielinJiang 已提交
93 94
    def test_trans_resize(self):
        trans = transforms.Compose([
95
            transforms.Resize(300),
L
LielinJiang 已提交
96
            transforms.RandomResizedCrop((280, 280)),
97
            transforms.Resize(280),
L
LielinJiang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            transforms.Resize((256, 200)),
            transforms.Resize((180, 160)),
            transforms.CenterCrop(128),
            transforms.CenterCrop((128, 128)),
        ])
        self.do_transform(trans)

    def test_flip(self):
        trans = transforms.Compose([
            transforms.RandomHorizontalFlip(1.0),
            transforms.RandomHorizontalFlip(0.0),
            transforms.RandomVerticalFlip(0.0),
            transforms.RandomVerticalFlip(1.0),
        ])
        self.do_transform(trans)

    def test_color_jitter(self):
115
        trans = transforms.Compose([
L
LielinJiang 已提交
116 117 118 119 120 121 122
            transforms.BrightnessTransform(0.0),
            transforms.HueTransform(0.0),
            transforms.SaturationTransform(0.0),
            transforms.ContrastTransform(0.0),
        ])
        self.do_transform(trans)

L
LielinJiang 已提交
123 124
    def test_rotate(self):
        trans = transforms.Compose([
125 126 127
            transforms.RandomRotation(90),
            transforms.RandomRotation([-10, 10]),
            transforms.RandomRotation(
L
LielinJiang 已提交
128
                45, expand=True),
129
            transforms.RandomRotation(
L
LielinJiang 已提交
130 131 132 133 134 135 136 137
                10, expand=True, center=(60, 80)),
        ])
        self.do_transform(trans)

    def test_pad(self):
        trans = transforms.Compose([transforms.Pad(2)])
        self.do_transform(trans)

138
        fake_img = self.create_image((200, 150, 3))
L
LielinJiang 已提交
139 140
        trans_pad = transforms.Pad(10)
        fake_img_padded = trans_pad(fake_img)
141
        np.testing.assert_equal(self.get_shape(fake_img_padded), (220, 170, 3))
L
LielinJiang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        trans_pad1 = transforms.Pad([1, 2])
        trans_pad2 = transforms.Pad([1, 2, 3, 4])
        img = trans_pad1(fake_img)
        img = trans_pad2(img)

    def test_random_crop(self):
        trans = transforms.Compose([
            transforms.RandomCrop(200),
            transforms.RandomCrop((140, 160)),
        ])
        self.do_transform(trans)

        trans_random_crop1 = transforms.RandomCrop(224)
        trans_random_crop2 = transforms.RandomCrop((140, 160))

157
        fake_img = self.create_image((500, 400, 3))
L
LielinJiang 已提交
158 159 160
        fake_img_crop1 = trans_random_crop1(fake_img)
        fake_img_crop2 = trans_random_crop2(fake_img_crop1)

161
        np.testing.assert_equal(self.get_shape(fake_img_crop1), (224, 224, 3))
L
LielinJiang 已提交
162

163
        np.testing.assert_equal(self.get_shape(fake_img_crop2), (140, 160, 3))
L
LielinJiang 已提交
164 165 166 167

        trans_random_crop_same = transforms.RandomCrop((140, 160))
        img = trans_random_crop_same(fake_img_crop2)

168 169
        trans_random_crop_bigger = transforms.RandomCrop(
            (180, 200), pad_if_needed=True)
L
LielinJiang 已提交
170 171 172 173 174 175 176 177 178 179
        img = trans_random_crop_bigger(img)

        trans_random_crop_pad = transforms.RandomCrop((224, 256), 2, True)
        img = trans_random_crop_pad(img)

    def test_grayscale(self):
        trans = transforms.Compose([transforms.Grayscale()])
        self.do_transform(trans)

        trans_gray = transforms.Grayscale()
180
        fake_img = self.create_image((500, 400, 3))
L
LielinJiang 已提交
181 182
        fake_img_gray = trans_gray(fake_img)

183 184
        np.testing.assert_equal(self.get_shape(fake_img_gray)[0], 500)
        np.testing.assert_equal(self.get_shape(fake_img_gray)[1], 400)
L
LielinJiang 已提交
185 186

        trans_gray3 = transforms.Grayscale(3)
187
        fake_img = self.create_image((500, 400, 3))
L
LielinJiang 已提交
188 189
        fake_img_gray = trans_gray3(fake_img)

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    def test_tranpose(self):
        trans = transforms.Compose([transforms.Transpose()])
        self.do_transform(trans)

        fake_img = self.create_image((50, 100, 3))
        converted_img = trans(fake_img)

        np.testing.assert_equal(self.get_shape(converted_img), (3, 50, 100))

    def test_to_tensor(self):
        trans = transforms.Compose([transforms.ToTensor()])
        fake_img = self.create_image((50, 100, 3))

        tensor = trans(fake_img)

        assert isinstance(tensor, paddle.Tensor)
        np.testing.assert_equal(tensor.shape, (3, 50, 100))

208 209 210 211 212 213
    def test_keys(self):
        fake_img1 = self.create_image((200, 150, 3))
        fake_img2 = self.create_image((200, 150, 3))
        trans_pad = transforms.Pad(10, keys=("image", ))
        fake_img_padded = trans_pad((fake_img1, fake_img2))

L
LielinJiang 已提交
214 215 216
    def test_exception(self):
        trans = transforms.Compose([transforms.Resize(-1)])

217
        trans_batch = transforms.Compose([transforms.Resize(-1)])
L
LielinJiang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

        with self.assertRaises(Exception):
            self.do_transform(trans)

        with self.assertRaises(Exception):
            self.do_transform(trans_batch)

        with self.assertRaises(ValueError):
            transforms.ContrastTransform(-1.0)

        with self.assertRaises(ValueError):
            transforms.SaturationTransform(-1.0),

        with self.assertRaises(ValueError):
            transforms.HueTransform(-1.0)

        with self.assertRaises(ValueError):
            transforms.BrightnessTransform(-1.0)

L
LielinJiang 已提交
237 238 239 240
        with self.assertRaises(ValueError):
            transforms.Pad([1.0, 2.0, 3.0])

        with self.assertRaises(TypeError):
241
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
242 243 244
            F.pad(fake_img, '1')

        with self.assertRaises(TypeError):
245
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
246 247 248
            F.pad(fake_img, 1, {})

        with self.assertRaises(TypeError):
249
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
250 251 252
            F.pad(fake_img, 1, padding_mode=-1)

        with self.assertRaises(ValueError):
253
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
254 255 256
            F.pad(fake_img, [1.0, 2.0, 3.0])

        with self.assertRaises(ValueError):
257
            transforms.RandomRotation(-2)
L
LielinJiang 已提交
258 259

        with self.assertRaises(ValueError):
260
            transforms.RandomRotation([1, 2, 3])
L
LielinJiang 已提交
261 262 263

        with self.assertRaises(ValueError):
            trans_gray = transforms.Grayscale(5)
264
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
265 266
            trans_gray(fake_img)

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        with self.assertRaises(TypeError):
            transform = transforms.RandomResizedCrop(64)
            transform(1)

        with self.assertRaises(ValueError):
            transform = transforms.BrightnessTransform([-0.1, -0.2])

        with self.assertRaises(TypeError):
            transform = transforms.BrightnessTransform('0.1')

        with self.assertRaises(ValueError):
            transform = transforms.BrightnessTransform('0.1', keys=1)

        with self.assertRaises(NotImplementedError):
            transform = transforms.BrightnessTransform('0.1', keys='a')

L
LielinJiang 已提交
283 284
    def test_info(self):
        str(transforms.Compose([transforms.Resize((224, 224))]))
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        str(transforms.Compose([transforms.Resize((224, 224))]))


class TestTransformsPIL(TestTransformsCV2):
    def get_backend(self):
        return 'pil'


class TestFunctional(unittest.TestCase):
    def test_errors(self):
        with self.assertRaises(TypeError):
            F.to_tensor(1)

        with self.assertRaises(ValueError):
            fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
                'uint8'))
            F.to_tensor(fake_img, data_format=1)

        with self.assertRaises(TypeError):
            fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
                'uint8'))
            F.resize(fake_img, '1')

        with self.assertRaises(TypeError):
            F.resize(1, 1)

        with self.assertRaises(TypeError):
            F.pad(1, 1)

        with self.assertRaises(TypeError):
            F.crop(1, 1, 1, 1, 1)

        with self.assertRaises(TypeError):
            F.hflip(1)

        with self.assertRaises(TypeError):
            F.vflip(1)

        with self.assertRaises(TypeError):
            F.adjust_brightness(1, 0.1)

        with self.assertRaises(TypeError):
            F.adjust_contrast(1, 0.1)

        with self.assertRaises(TypeError):
            F.adjust_hue(1, 0.1)

        with self.assertRaises(TypeError):
            F.adjust_saturation(1, 0.1)

        with self.assertRaises(TypeError):
            F.rotate(1, 0.1)

        with self.assertRaises(TypeError):
            F.to_grayscale(1)

        with self.assertRaises(ValueError):
            set_image_backend(1)

        with self.assertRaises(ValueError):
            image_load('tmp.jpg', backend=1)

    def test_normalize(self):
        np_img = (np.random.rand(28, 24, 3)).astype('uint8')
        pil_img = Image.fromarray(np_img)
        tensor_img = F.to_tensor(pil_img)
        tensor_img_hwc = F.to_tensor(pil_img, data_format='HWC')

        mean = [0.5, 0.5, 0.5]
        std = [0.5, 0.5, 0.5]

        normalized_img = F.normalize(tensor_img, mean, std)
        normalized_img = F.normalize(
            tensor_img_hwc, mean, std, data_format='HWC')

        normalized_img = F.normalize(pil_img, mean, std, data_format='HWC')
        normalized_img = F.normalize(
            np_img, mean, std, data_format='HWC', to_rgb=True)

    def test_center_crop(self):
        np_img = (np.random.rand(28, 24, 3)).astype('uint8')
        pil_img = Image.fromarray(np_img)

        np_cropped_img = F.center_crop(np_img, 4)
        pil_cropped_img = F.center_crop(pil_img, 4)

        np.testing.assert_almost_equal(np_cropped_img,
                                       np.array(pil_cropped_img))

    def test_pad(self):
        np_img = (np.random.rand(28, 24, 3)).astype('uint8')
        pil_img = Image.fromarray(np_img)

        np_padded_img = F.pad(np_img, [1, 2], padding_mode='reflect')
        pil_padded_img = F.pad(pil_img, [1, 2], padding_mode='reflect')

        np.testing.assert_almost_equal(np_padded_img, np.array(pil_padded_img))

        pil_p_img = pil_img.convert('P')
        pil_padded_img = F.pad(pil_p_img, [1, 2])
        pil_padded_img = F.pad(pil_p_img, [1, 2], padding_mode='reflect')

    def test_resize(self):
        np_img = (np.zeros([28, 24, 3])).astype('uint8')
        pil_img = Image.fromarray(np_img)

        np_reseized_img = F.resize(np_img, 40)
        pil_reseized_img = F.resize(pil_img, 40)

        np.testing.assert_almost_equal(np_reseized_img,
                                       np.array(pil_reseized_img))

        gray_img = (np.zeros([28, 32])).astype('uint8')
        gray_resize_img = F.resize(gray_img, 40)

    def test_to_tensor(self):
        np_img = (np.random.rand(28, 28) * 255).astype('uint8')
        pil_img = Image.fromarray(np_img)

        np_tensor = F.to_tensor(np_img, data_format='HWC')
        pil_tensor = F.to_tensor(pil_img, data_format='HWC')

        np.testing.assert_allclose(np_tensor.numpy(), pil_tensor.numpy())

        # test float dtype 
        float_img = np.random.rand(28, 28)
        float_tensor = F.to_tensor(float_img)

        pil_img = Image.fromarray(np_img).convert('I')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('I;16')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('F')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('1')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('YCbCr')
        pil_tensor = F.to_tensor(pil_img)

    def test_image_load(self):
        fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype(
            'uint8'))

        path = 'temp.jpg'
        fake_img.save(path)

        set_image_backend('pil')

        pil_img = image_load(path).convert('RGB')

        print(type(pil_img))

        set_image_backend('cv2')

        np_img = image_load(path)

        os.remove(path)
L
LielinJiang 已提交
446

447 448 449 450 451 452 453 454 455 456
    def test_rotate(self):
        np_img = (np.random.rand(28, 28, 3) * 255).astype('uint8')
        pil_img = Image.fromarray(np_img).convert('RGB')

        rotated_np_img = F.rotate(np_img, 80, expand=True)
        rotated_pil_img = F.rotate(pil_img, 80, expand=True)

        np.testing.assert_equal(rotated_np_img.shape,
                                np.array(rotated_pil_img).shape)

457 458 459 460 461 462 463 464 465 466 467 468
    def test_rotate1(self):
        np_img = (np.random.rand(28, 28, 3) * 255).astype('uint8')
        pil_img = Image.fromarray(np_img).convert('RGB')

        rotated_np_img = F.rotate(
            np_img, 80, expand=True, center=[0, 0], fill=[0, 0, 0])
        rotated_pil_img = F.rotate(
            pil_img, 80, expand=True, center=[0, 0], fill=[0, 0, 0])

        np.testing.assert_equal(rotated_np_img.shape,
                                np.array(rotated_pil_img).shape)

L
LielinJiang 已提交
469 470 471

if __name__ == '__main__':
    unittest.main()