prelu_mkldnn_op.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/expect.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using framework::Tensor;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::MKLDNNGetDataType;
using platform::to_void_cast;

namespace {
template <typename T>
class PReluMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, dnnl::prelu_forward,
                                      dnnl::prelu_backward> {
 public:
  PReluMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
35
                     const dnnl::engine engine, platform::Place cpu_place,
36 37
                     const Tensor* x, const Tensor* weights,
                     const std::string& uniq_name, const std::string& mode,
38
                     const std::string& data_format, bool is_test = false)
39 40 41 42
      : platform::MKLDNNHandlerT<T, dnnl::prelu_forward, dnnl::prelu_backward>(
            dev_ctx, engine, cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name)) {
43
    if (unlikely(!this->isCached())) {
44 45 46 47 48 49 50 51 52
      auto x_md = memory::desc(framework::vectorize(x->dims()),
                               MKLDNNGetDataType<T>(), x->format());

      auto weights_dims = framework::vectorize(weights->dims());

      // weights must have same size as X only for "element" case
      if (weights->dims().size() != x->dims().size()) {
        auto new_weights_dims = std::vector<int64_t>(x->dims().size(), 1);
        if (mode == "channel") {
53 54 55 56 57 58 59
          if (data_format == "NHWC") {
            new_weights_dims[x->dims().size() - 1] =
                *std::max_element(weights_dims.begin(), weights_dims.end());
          } else {
            new_weights_dims[1] =
                *std::max_element(weights_dims.begin(), weights_dims.end());
          }
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        }
        weights_dims = std::move(new_weights_dims);
      }
      auto weights_md = memory::desc(weights_dims, MKLDNNGetDataType<T>(),
                                     memory::format_tag::any);

      this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                              x_md, weights_md);
      if (!is_test)
        this->AcquireBackwardPrimitiveDescriptor(x_md, weights_md, x_md,
                                                 weights_md);
    }
  }

  std::shared_ptr<memory> AcquireWeightsMemoryPossiblyWithReorder(
      const Tensor* input, const bool is_test) {
    const T* input_data = input->data<T>();

    // if weights are 1D, every format tag is correct, so we accept
    // format_tag::any's output and no reorder is needed
    if (input->dims().size() == 1) {
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                              to_void_cast<T>(input_data),
                                              "@alpha_mem_p");
    }

    auto user_weights_md =
        memory::desc(framework::vectorize(input->dims()),
                     MKLDNNGetDataType<T>(), input->format());
    return this->AcquireMemoryWithReorder(
        user_weights_md, this->fwd_pd_->weights_desc(),
        to_void_cast<T>(input_data), "@alpha_mem_p", is_test);
  }

  std::shared_ptr<memory> AcquireDiffWeightsMemory(Tensor* output) {
    T* output_data = output->mutable_data<T>(
        this->place_, this->bwd_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(),
                                            output_data, "@diff_weights_mem_p");
  }
};
}  // anonymous namespace

template <typename T>
class PReluMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    const auto* alpha = ctx.Input<Tensor>("Alpha");
    auto* out = ctx.Output<Tensor>("Out");
    const bool is_test = ctx.Attr<bool>("is_test");
    const auto mode = ctx.Attr<std::string>("mode");
119
    const auto data_format = ctx.Attr<std::string>("data_format");
120 121

    PReluMKLDNNHandler<T> handler(dev_ctx, onednn_engine, ctx.GetPlace(), x,
122 123
                                  alpha, ctx.InputName("X"), mode, data_format,
                                  is_test);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    auto src_memory_p = handler.AcquireSrcMemory(x);
    auto weights_memory_p =
        handler.AcquireWeightsMemoryPossiblyWithReorder(alpha, is_test);
    auto dst_memory_p = handler.AcquireDstMemory(out);
    auto prelu_p = handler.AcquireForwardPrimitive();

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    prelu_p->execute(astream, {{DNNL_ARG_SRC, *src_memory_p},
                               {DNNL_ARG_WEIGHTS, *weights_memory_p},
                               {DNNL_ARG_DST, *dst_memory_p}});
    astream.wait();

    out->set_layout(framework::DataLayout::kMKLDNN);
    out->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
};

template <typename T>
class PReluGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dalpha = ctx.Output<Tensor>(framework::GradVarName("Alpha"));
    auto* alpha = ctx.Input<Tensor>("Alpha");
    const bool is_test = ctx.Attr<bool>("is_test");
    const auto mode = ctx.Attr<std::string>("mode");
160
    const auto data_format = ctx.Attr<std::string>("data_format");
161 162

    PReluMKLDNNHandler<T> handler(dev_ctx, onednn_engine, ctx.GetPlace(), x,
163 164
                                  alpha, framework::GradVarName("X"), mode,
                                  data_format);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

    auto src_memory_p = handler.AcquireSrcMemory(x);
    auto weights_memory_p =
        handler.AcquireWeightsMemoryPossiblyWithReorder(alpha, is_test);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
    auto diff_weights_memory_p = handler.AcquireDiffWeightsMemory(dalpha);
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout);
    auto prelu_p = handler.AcquireBackwardPrimitive();

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    prelu_p->execute(astream,
                     {{DNNL_ARG_SRC, *src_memory_p},
                      {DNNL_ARG_WEIGHTS, *weights_memory_p},
                      {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                      {DNNL_ARG_DIFF_SRC, *diff_src_memory_p},
                      {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
    astream.wait();

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(GetMKLDNNFormat(*diff_src_memory_p));
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(prelu, MKLDNN, paddle::platform::CPUPlace,
                   ops::PReluMKLDNNKernel<float>,
                   ops::PReluMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(prelu_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::PReluGradMKLDNNKernel<float>,
                   ops::PReluGradMKLDNNKernel<paddle::platform::bfloat16>);