device_worker.py 18.4 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Defination of device workers."""
15

C
Chengmo 已提交
16 17
from __future__ import print_function

18 19 20
__all__ = [
    'DeviceWorker', 'Hogwild', 'DownpourSGD', 'Section', 'DownpourSGDOPT'
]
21

22 23

class DeviceWorker(object):
X
xjqbest 已提交
24
    """
25
    DeviceWorker is an abstract class, which generates worker desc.
26 27
    This class is an inner class that we do computation logics within
    the implementation. For example, execution of a program or a graph.
X
xjqbest 已提交
28
    """
29

30
    def __init__(self):
31
        """Init."""
D
dongdaxiang 已提交
32 33
        self._program = None
        self._infer = None
34

35 36 37
    def _set_infer(self, infer=False):
        """
        set inference flag for current device worker
C
Chengmo 已提交
38

39 40 41
        Args:
            infer(bool): whether to do inference
        """
D
dongdaxiang 已提交
42
        self._infer = infer
D
dongdaxiang 已提交
43

44
    def _set_fleet_desc(self, fleet_desc):
X
xjqbest 已提交
45 46 47 48 49 50
        """
        Set fleet desc.

        Args:
            fleet_desc(PSParameter): pslib.PSParameter object
        """
D
dongdaxiang 已提交
51
        self._fleet_desc = fleet_desc
D
dongdaxiang 已提交
52

53
    def _set_program(self, program):
X
xjqbest 已提交
54 55 56 57 58 59
        """
        Set program.

        Args:
            program(Program): a Program object
        """
D
dongdaxiang 已提交
60
        self._program = program
61

62
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
63 64 65 66 67 68 69 70 71
        """
        Generator worker desc.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        raise NotImplementedError(
            "DeviceWorker does not implement gen_worker_desc, "
            "please use Hogwild or DownpourSGD, etc.")
72 73 74


class Hogwild(DeviceWorker):
X
xjqbest 已提交
75 76 77 78
    """
    Hogwild is a kind of SGD algorithm.

    """
79

80
    def __init__(self):
81
        """Init."""
82 83
        super(Hogwild, self).__init__()

84
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
85 86 87 88 89 90
        """
        Generator worker desc, which device worker is HogwildWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
91
        trainer_desc.device_worker_name = "HogwildWorker"
D
dongdaxiang 已提交
92
        if self._infer:
93
            # just ignore feed op for inference model
W
wangguanqun 已提交
94 95 96 97
            trainer_desc.hogwild_param.skip_ops.extend([
                "feed", "push_sparse", "push_sparse_v2", "push_dense",
                "distributed_push_sparse", "send"
            ])
98

99 100 101 102 103 104
        dense_table_set = set()
        program_id = str(id(self._program))
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
105 106
        # when opt_info is None or empty dict, it should return
        if not opt_info:
107
            return
T
Thunderbrook 已提交
108 109 110 111 112 113
        downpour = trainer_desc.downpour_param
        hogwild = trainer_desc.hogwild_param
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                hogwild.stat_var_names.extend([i])
                downpour.stat_var_names.extend([i])
114

115 116
        from paddle.fluid.incubate.fleet.parameter_server import version

C
Chengmo 已提交
117 118 119
        if version.is_transpiler() and "fleet_desc" not in opt_info:
            return

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        program_configs = opt_info["program_configs"]

        for pid in program_configs:
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "HogwildWorker"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.table_id = \
                    i.table_id
        sparse_len = len(worker.get_desc().sparse_table)
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
            sparse_table.fea_dim = \
                self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
166
                    i].accessor.fea_dim
167 168 169 170 171 172 173 174 175 176 177 178
            # not use emb_dim
            sparse_table.emb_dim = -1
            # not use hard code click
            sparse_table.label_var_name = ""

        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
179
        hogwild.skip_ops.extend(worker.get_desc().skip_op)
180
        if self._infer:
181 182
            hogwild.skip_ops.extend(
                ["push_sparse", "push_sparse_v2", "push_dense"])
183

184

D
dongdaxiang 已提交
185
class DownpourSGD(DeviceWorker):
X
xjqbest 已提交
186 187 188
    """
    DownpourSGD is a kind of distributed SGD algorithm.
    """
189

190
    def __init__(self):
X
xjqbest 已提交
191 192
        """
        Init.
193
        initialize downpourSGD device worker
X
xjqbest 已提交
194
        """
D
dongdaxiang 已提交
195
        super(DownpourSGD, self).__init__()
196

197
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
198 199 200 201 202 203
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
X
fix bug  
xjqbest 已提交
204
        dense_table_set = set()
D
dongdaxiang 已提交
205 206
        program_id = str(id(self._program))
        if self._program == None:
D
dongdaxiang 已提交
207
            print("program of current device worker is not configured")
208
            exit(-1)
D
dongdaxiang 已提交
209
        opt_info = self._program._fleet_opt
D
dongdaxiang 已提交
210
        program_configs = opt_info["program_configs"]
211
        downpour = trainer_desc.downpour_param
D
dongdaxiang 已提交
212

D
dongdaxiang 已提交
213 214
        for pid in program_configs:
            if pid == program_id:
D
dongdaxiang 已提交
215 216 217 218 219 220
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
X
xjqbest 已提交
221
                    dense_table_set.add(i)
D
dongdaxiang 已提交
222 223 224 225
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
X
fix bug  
xjqbest 已提交
226
                    dense_table_set.add(i)
Z
zhang wenhui 已提交
227 228 229 230 231 232 233
                # code for partial push dense table such as multitask
                if "cond2denseid" in program_configs[program_id]:
                    cond2denseid = program_configs[program_id]["cond2denseid"]
                    for key, value in cond2denseid.items():
                        mc_map = pc.partial_pushdense_condtable_map.add()
                        mc_map.key = key
                        mc_map.value = value
D
dongdaxiang 已提交
234
                break
235

T
Thunderbrook 已提交
236 237
        trainer_desc.device_worker_name = opt_info.get("worker_class",
                                                       "DownpourWorker")
238 239
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
240 241 242 243 244 245 246 247
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
248 249
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
250
                dense_table.dense_value_name.extend(i.dense_variable_name)
251 252
                dense_table.table_id = \
                    i.table_id
253
        sparse_len = len(worker.get_desc().sparse_table)
254 255
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
256 257 258 259 260 261 262
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
263 264
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
265 266
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
267
                        i].accessor.fea_dim
268 269 270 271
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
272
                        i].accessor.fea_dim - 2
273 274 275
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
276 277 278
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])
279

280
        for i in worker.get_desc().dense_table:
X
fix bug  
xjqbest 已提交
281 282 283
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
284
                dense_table.dense_value_name.extend(i.dense_variable_name)
X
fix bug  
xjqbest 已提交
285 286
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
X
xujiaqi01 已提交
287
        downpour.skip_ops.extend(worker.get_desc().skip_op)
D
dongdaxiang 已提交
288
        if self._infer:
289 290
            downpour.push_dense = False
            downpour.push_sparse = False
X
fix bug  
xjqbest 已提交
291

292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
class DownpourSGDOPT(DeviceWorker):
    """
    DownpourSGDOPT is a kind of distributed SGD algorithm.
    """

    def __init__(self):
        """
        Init.
        initialize downpourSGDOPT device worker
        """
        super(DownpourSGDOPT, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        dense_table_set = set()
        program_id = str(id(self._program))
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
        program_configs = opt_info["program_configs"]
        downpour = trainer_desc.downpour_param

        for pid in program_configs:
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "DownpourWorkerOpt"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.table_id = \
                    i.table_id
        sparse_len = len(worker.get_desc().sparse_table)
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
367
                        i].accessor.fea_dim
368 369 370 371
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
372
                        i].accessor.fea_dim - 2
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
        if "local_tables" in opt_info and sparse_table.table_id in opt_info[
                "local_tables"]:
            sparse_table.is_local = True
        if "async_tables" in opt_info and sparse_table.table_id in opt_info[
                "async_tables"]:
            sparse_table.is_async = True
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])

        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
        downpour.skip_ops.extend(worker.get_desc().skip_op)
        if self._infer:
            downpour.push_dense = False
            downpour.push_sparse = False


H
hutuxian 已提交
399
class Section(DeviceWorker):
400
    """SectionWorker."""
H
hutuxian 已提交
401 402

    def __init__(self):
403
        """Init."""
H
hutuxian 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416
        super(Section, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is SectionWorker.
        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        from google.protobuf import text_format
        from . import core
        trainer_desc.device_worker_name = "SectionWorker"
        pipeline_opt = self._program._pipeline_opt
        section_param = trainer_desc.section_param
L
lilong12 已提交
417
        section_param.num_microbatches = pipeline_opt["num_microbatches"]
H
hutuxian 已提交
418
        section_param.start_cpu_core_id = pipeline_opt["start_cpu_core_id"]
419 420 421 422 423 424 425 426 427 428 429 430
        section_param.pipeline_stage = pipeline_opt["pipeline_stage"]
        section_param.num_pipeline_stages = pipeline_opt["num_pipeline_stages"]
        schedule_mode_str = pipeline_opt["schedule_mode"]
        # F-then-B scheduler which runs Forward phase for all microbatches,
        # then runs Backward phase for all microbatches.
        # 1F1B scheduler, which runs forward phase and backward phase altertively
        # after startup phase.
        assert schedule_mode_str in ["F-then-B", "1F1B"], (
            "The schedule mode "
            "for pipeline must be one of F-then-B or 1F1B")
        schedule_mode = 0 if schedule_mode_str == "F-then-B" else 1
        section_param.schedule_mode = schedule_mode
431 432
        cfg = section_param.section_config
        program = pipeline_opt["section_program"]
433
        cfg.program_desc.ParseFromString(program._get_desc()
434 435 436 437 438
                                         .serialize_to_string())
        # TODO: why does not work
        # cfg.program_desc.CopyFrom(program.program._get_desc())
        place = pipeline_opt["place"]
        place_id = pipeline_opt["place_id"]
439 440 441 442
        if core.is_compiled_with_cuda():
            assert isinstance(place, core.CUDAPlace)
        elif core.is_compiled_with_npu():
            assert isinstance(place, core.NPUPlace)
443 444
        cfg.place = cfg.CUDAPlace
        cfg.place_id = place_id
H
hutuxian 已提交
445 446


447
class DeviceWorkerFactory(object):
448
    def _create_device_worker(self, worker_type):
449 450
        classname = worker_type.capitalize()
        return globals()[classname]()