test_imperative_mnist.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
M
minqiyang 已提交
27
from paddle.fluid.dygraph.base import to_variable
28
from test_imperative_base import new_program_scope
29
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
30 31


M
minqiyang 已提交
32
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
33
    def __init__(self,
34
                 num_channels,
M
minqiyang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
50
        super(SimpleImgConvPool, self).__init__()
M
minqiyang 已提交
51 52

        self._conv2d = Conv2D(
53
            num_channels=num_channels,
M
minqiyang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
71

M
minqiyang 已提交
72
    def forward(self, inputs):
M
minqiyang 已提交
73 74 75
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
76 77


M
minqiyang 已提交
78
class MNIST(fluid.dygraph.Layer):
79 80
    def __init__(self):
        super(MNIST, self).__init__()
81

M
minqiyang 已提交
82
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
83
            1, 20, 5, 2, 2, act="relu")
84

M
minqiyang 已提交
85
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
86
            20, 50, 5, 2, 2, act="relu")
M
minqiyang 已提交
87

88
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
89
        SIZE = 10
90 91 92 93 94 95 96 97
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=scale)),
            act="softmax")
M
minqiyang 已提交
98 99 100 101

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
102
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
103 104 105 106 107
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
108 109 110 111 112 113 114 115 116
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

M
minqiyang 已提交
117
    def test_mnist_float32(self):
118
        seed = 90
M
minqiyang 已提交
119
        epoch_num = 1
120 121 122
        batch_size = 128
        batch_num = 50

123 124
        traced_layer = None

M
minqiyang 已提交
125
        with fluid.dygraph.guard():
126 127 128
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

129 130 131
            mnist = MNIST()
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=mnist.parameters())
132 133 134 135 136 137 138 139

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
140

M
minqiyang 已提交
141
            mnist.train()
142
            dy_param_init_value = {}
143

144 145
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
146
            for epoch in range(epoch_num):
147 148 149 150 151 152
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
153
                    label.stop_gradient = True
M
minqiyang 已提交
154

155
                    if batch_id % 10 == 0:
156
                        cost, traced_layer = paddle.imperative.TracedLayer.trace(
157 158 159 160 161 162
                            mnist, inputs=img)
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
                            './infer_imperative_mnist')
163 164 165
                    else:
                        cost = mnist(img)

166 167 168 169
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
170 171 172
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
173
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
174 175 176

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
177
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
178

L
lujun 已提交
179
                    avg_loss.backward()
M
minqiyang 已提交
180 181 182 183 184
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
185
                        dy_param_value[param.name] = param.numpy()
186 187 188 189 190 191 192 193

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

194
            mnist = MNIST()
M
minqiyang 已提交
195
            sgd = SGDOptimizer(learning_rate=1e-3)
196
            train_reader = paddle.batch(
197 198 199
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True)
200 201 202 203 204

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
205 206 207
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
208 209 210 211

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
212
            for param in mnist.parameters():
213 214 215 216 217 218 219 220
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
221 222
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
223 224
                    if batch_id >= batch_num:
                        break
M
minqiyang 已提交
225 226 227 228
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
229 230
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])
M
minqiyang 已提交
231 232 233

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
234 235 236 237

                    if traced_layer is not None:
                        traced_layer([static_x_data])

M
minqiyang 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
251 252

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
253 254 255 256
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

257
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
258
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
259 260 261 262


if __name__ == '__main__':
    unittest.main()