pybind.cc 96.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
59
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
69 70 71
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
72
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
73
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
74
#include "paddle/fluid/operators/common_infer_shape_functions.h"
75
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
76
#include "paddle/fluid/operators/py_func_op.h"
77
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
78
#include "paddle/fluid/platform/cpu_info.h"
79
#include "paddle/fluid/platform/device/device_wrapper.h"
80
#include "paddle/fluid/platform/device_context.h"
81
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/enforce.h"
83
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
84
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
87 88 89
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
90
#include "paddle/fluid/pybind/cuda_streams_py.h"
91
#include "paddle/fluid/pybind/distributed_py.h"
92
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
93
#include "paddle/fluid/pybind/imperative.h"
94
#include "paddle/fluid/pybind/io.h"
95
#include "paddle/fluid/pybind/jit.h"
96 97
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
98
#include "paddle/utils/none.h"
99 100 101
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
112
#include "paddle/fluid/pybind/generator_py.h"
113
#include "paddle/fluid/pybind/global_value_getter_setter.h"
114
#include "paddle/fluid/pybind/gloo_context_py.h"
115
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/ir.h"
119
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
121
#include "paddle/fluid/pybind/pybind_variant_caster.h"
122
#include "paddle/phi/backends/device_manager.h"
123

124
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
125
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
126
#endif
127
#include "paddle/fluid/framework/data_type.h"
128 129
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
130 131
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
132
#include "paddle/fluid/pybind/reader_py.h"
133
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
134
#include "paddle/fluid/pybind/tensor_py.h"
135
#include "paddle/fluid/string/to_string.h"
136 137
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
138
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
139
#endif
140
#ifndef PADDLE_WITH_HIP
141
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
142
#endif
143
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
144 145
#endif

146
#ifdef PADDLE_WITH_ASCEND_CL
147
#include "paddle/fluid/platform/collective_helper.h"
148 149
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
150 151
#endif

152
#ifdef PADDLE_WITH_XPU
153
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
154
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
155 156
#endif

157
#ifdef PADDLE_WITH_CUSTOM_DEVICE
158
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
159 160 161
#include "paddle/phi/capi/capi.h"
#endif

162
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
163

J
jianghaicheng 已提交
164
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
165 166
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
167
#endif
168

169 170 171 172
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
173 174 175 176
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
177
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
178 179 180
#include "paddle/fluid/pybind/fleet_py.h"
#endif

181 182 183 184
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

185
#include "paddle/fluid/eager/api/utils/global_utils.h"
186
#include "paddle/fluid/imperative/layout_autotune.h"
187 188
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
189 190
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
191 192
#include "pybind11/stl.h"

193
DECLARE_bool(use_mkldnn);
194

Q
Qiao Longfei 已提交
195 196
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
197 198 199
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
200

201
namespace paddle {
202
namespace pybind {
203

0
0x45f 已提交
204
PyTypeObject *g_framework_scope_pytype = nullptr;
205
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
206
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
207

208 209 210 211 212 213 214 215
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

216
bool IsCompiledWithCUDA() {
217 218 219 220 221 222 223
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

224 225 226 227 228 229 230 231
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

232 233
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
234 235 236 237 238 239
  return false;
#else
  return true;
#endif
}

240 241 242 243 244 245 246 247
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

248 249 250 251 252 253 254 255
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

256 257 258 259 260 261 262 263
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
264 265 266 267 268 269 270 271
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

272 273 274 275 276 277 278 279
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

280 281 282 283 284 285 286 287
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

288 289 290 291 292 293 294 295
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

296 297 298 299 300 301 302 303
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

304 305 306 307 308 309 310 311 312 313 314
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

315 316 317 318 319 320 321 322 323 324 325
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

343
bool IsCompiledWithBrpc() {
344
#ifndef PADDLE_WITH_DISTRIBUTE
345
  return false;
346
#else
347
  return true;
348
#endif
349 350
}

Y
update  
Yancey1989 已提交
351
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
352
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
353 354 355 356 357 358
  return true;
#else
  return false;
#endif
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
427 428
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
429 430
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
444 445
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
446 447
    }
    vec_res.emplace_back(
448
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
449 450 451 452 453 454 455 456 457 458 459 460
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
461 462
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
463 464 465 466 467 468 469 470 471 472 473 474
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
475 476 477
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
478 479 480 481
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
482 483
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
484 485 486 487
  }
  return vec_res;
}

O
OccupyMars2025 已提交
488
static void inline CreateVariableIfNotExist(
489 490
    const py::handle &py_handle,
    const framework::Scope &scope,
491 492 493 494 495 496
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
497 498
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
499 500 501 502 503 504 505 506 507 508 509 510 511
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
512 513 514
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
515 516 517 518 519
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
520 521 522 523 524
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
525 526
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
527
        PADDLE_ENFORCE_NOT_NULL(
528 529 530
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
531 532 533 534
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
535
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
536 537
        tensor_temp->mutable_data(
            exe->GetPlace(),
538
            framework::TransToPhiDataType(var_desc.GetDataType()));
539 540 541
      }
    }
  } else {
542 543
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
544 545 546 547 548
  }

  return;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
565 566
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
567 568 569 570 571 572 573
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
574 575 576 577
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
578
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
579 580 581 582 583 584 585 586
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

587
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
588
  BindImperative(&m);
589
  BindEager(&m);
J
Jack Zhou 已提交
590
  BindEagerStringTensor(&m);
591
  BindCudaStream(&m);
592
  BindJit(&m);
593

Y
Yu Yang 已提交
594 595 596
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
597
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
598

599 600
  AssertStaticGraphAndDygraphGradMakerNoDiff();

601
  m.doc() = "C++ core of PaddlePaddle";
602

603 604 605 606
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

607
  BindException(&m);
Y
Yu Yang 已提交
608

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

624 625
  m.def("set_num_threads", &platform::SetNumThreads);

626 627
  m.def("disable_signal_handler", &DisableSignalHandler);

628 629 630 631 632 633 634 635
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

636
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
637
  m.def("cudnn_version", &platform::DnnVersion);
638 639 640 641 642 643
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
644
#endif
645

Z
Zeng Jinle 已提交
646 647 648 649
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

650 651 652 653 654 655 656 657 658
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
659 660
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
661
      .def("replay", &platform::CUDAGraph::Replay)
662 663
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
664 665
#endif

Z
Zeng Jinle 已提交
666 667 668 669
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
670 671 672
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
673 674

    PADDLE_ENFORCE_NOT_NULL(
675 676 677 678
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
679

6
633WHU 已提交
680 681
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
682
    framework::Tensor tensor;
6
633WHU 已提交
683

S
Siming Dai 已提交
684
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
685 686
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
687
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
688
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
689 690 691 692 693
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
694

695
  m.def("_create_loaded_parameter",
696 697
        [](const py::handle &vec_var_list,
           const Scope &scope,
698
           const Executor *executor) {
O
OccupyMars2025 已提交
699
          CreateVariableIfNotExist(vec_var_list, scope, executor);
700 701
        });

702 703 704 705 706 707
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
708 709
  });

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

735 736 737 738 739 740
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
741

S
sneaxiy 已提交
742
  m.def(
S
sneaxiy 已提交
743
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
744 745 746 747
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
748 749 750
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
767
            }
768
            all_kernels_info.emplace(op_type, kernel_types);
769
          }
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
786
                }
787 788
              } else {
                kernel_types.emplace_back(kernel_type_str);
789
              }
790
            }
791 792 793
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
794
          }
795
        }
796

797 798 799 800
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
801 802 803
           Return the registered kernels in paddle.

           Args:
804
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
805
           )DOC");
806

807 808 809 810 811 812
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
813 814 815 816 817
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
818

S
sneaxiy 已提交
819 820 821
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
822
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
823

824
  m.def("_set_fuse_parameter_group_size",
825
        &paddle::framework::ir::SetFuseParameterGroupsSize);
826
  m.def("_set_fuse_parameter_memory_size",
827
        &paddle::framework::ir::SetFuseParameterMemorySize);
828

S
sneaxiy 已提交
829 830 831
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

832 833
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

834 835 836
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
878 879 880 881 882 883 884 885 886 887 888 889 890
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
891 892 893 894 895
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
896

897
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
898 899 900

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
901
      .def(py::init<>())
902
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
903
      .def("set_int",
904 905
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
906 907 908 909 910 911 912
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
913 914 915 916 917 918
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
919 920 921 922
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
923 924 925 926
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
927 928 929 930
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
957
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
958 959 960 961 962 963
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
964
#endif
965 966 967
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
968 969
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
970 971 972 973 974 975 976 977 978 979
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
980 981
                scope_vec->size(),
                0,
982 983 984 985 986
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
987 988 989 990
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
991

S
sneaxiy 已提交
992
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
993

0
0x45f 已提交
994
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1008
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1009 1010 1011 1012 1013
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1014 1015 1016
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1017 1018
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1019 1020 1021 1022 1023 1024 1025
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1026
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1027

1028
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1029
           current scope, the variable would be created. Otherwise,
1030
           return the existing variable.
S
sneaxiy 已提交
1031 1032

           Args:
1033 1034
               name (str): the variable name.

S
sneaxiy 已提交
1035
           Returns:
1036
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1037
           )DOC",
1038
          py::return_value_policy::reference)
1039 1040 1041
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1042
           R"DOC(
1043
           Find variable named :code:`name` in the current scope or
1044
           its parent scope. Return None if not found. 
1045

S
sneaxiy 已提交
1046 1047
           Args:
               name (str): the variable name.
1048

S
sneaxiy 已提交
1049
           Returns:
1050
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1051
           )DOC",
1052
           py::return_value_policy::reference)
1053
      .def("size", &Scope::Size)
1054 1055 1056
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1068
      .def(
1069 1070
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1071
          R"DOC(
S
sneaxiy 已提交
1072 1073 1074 1075 1076
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1077
          py::return_value_policy::reference)
1078 1079
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1080 1081
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1082 1083
           )DOC")
      .def("_kids", &Scope::kids);
1084

1085 1086 1087 1088 1089 1090 1091 1092
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1093
        Create a new scope.
1094

S
sneaxiy 已提交
1095 1096 1097
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1098
      py::return_value_policy::reference);
S
sneaxiy 已提交
1099

Y
Yu Yang 已提交
1100 1101
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1102 1103
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1104 1105 1106 1107
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1108
        PADDLE_ENFORCE_EQ(
1109 1110
            info.Proto().SerializeToString(&str),
            true,
1111 1112
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1113 1114 1115
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1116 1117
    return ret_values;
  });
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1156 1157 1158 1159 1160 1161 1162 1163
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1164
              res = op_checker->GetDefaultAttrsMap();
1165 1166 1167 1168
            }
          }
          return res;
        });
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1204 1205 1206
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1207 1208 1209 1210 1211
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1212 1213 1214
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1215
  m.def("infer_no_need_buffer_slots",
1216 1217
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1245 1246 1247 1248 1249 1250
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1251 1252 1253
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1254
            Args:
1255 1256 1257 1258 1259 1260 1261 1262
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1263 1264 1265 1266
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1267 1268
    VLOG(4) << s;
    return s;
1269 1270 1271 1272 1273 1274
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1275
  });
1276 1277 1278 1279
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1280 1281 1282
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1283 1284
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1285

Y
Yu Yang 已提交
1286
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1287
      .def_static("create",
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1304
                  })
1305 1306 1307 1308
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1309
#ifndef PADDLE_WITH_XPU
1310 1311 1312
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1313
#else
W
Wilber 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1328
#endif
1329 1330 1331 1332 1333
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1334
#ifndef PADDLE_WITH_MLU
1335 1336 1337
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1338 1339
#else
                    return new paddle::platform::MLUDeviceContext(place);
1340
#endif
1341 1342 1343 1344 1345
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1346
#ifndef PADDLE_WITH_ASCEND_CL
1347 1348 1349
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1350 1351
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1352
#endif
1353 1354 1355 1356
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1357
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1358 1359 1360 1361
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1362 1363
#else
                return new paddle::platform::CustomDeviceContext(place);
1364
#endif
1365 1366 1367 1368 1369
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1370
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1371 1372 1373
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1374
#else
L
Leo Chen 已提交
1375
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1388 1389 1390 1391
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1392 1393
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1394
#endif
1395 1396 1397 1398 1399
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1400
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1401 1402 1403
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1404 1405 1406
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1407
          });
1408
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1409 1410
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1411 1412 1413
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1414
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1415
#else
R
ronnywang 已提交
1416
          VLOG(1) << string::Sprintf(
1417 1418 1419 1420
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1421
              "PaddlePaddle by: pip install paddlepaddle\n");
1422 1423 1424 1425 1426 1427
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1428
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1429
#else
R
ronnywang 已提交
1430
          VLOG(1) << string::Sprintf(
1431 1432 1433 1434
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1435
              "PaddlePaddle by: pip install paddlepaddle\n");
1436 1437 1438 1439 1440 1441
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1442
    devices = phi::DeviceManager::GetAllDeviceList();
1443
#else
R
ronnywang 已提交
1444
          VLOG(1) << string::Sprintf(
1445 1446 1447 1448
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1449
              "PaddlePaddle by: pip install paddlepaddle\n");
1450 1451 1452 1453 1454 1455
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1456
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1457
#else
R
ronnywang 已提交
1458
          VLOG(1) << string::Sprintf(
1459 1460 1461 1462 1463 1464
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1465
              "PaddlePaddle by: pip install paddlepaddle\n");
1466 1467 1468
#endif
    return devices;
  });
Y
Yu Yang 已提交
1469

Y
Yu Yang 已提交
1470
  py::class_<OperatorBase>(m, "Operator")
1471 1472 1473 1474 1475 1476 1477
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1478 1479
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1480 1481 1482 1483 1484 1485
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1486
      .def("run",
1487 1488
           [](OperatorBase &self,
              const Scope &scope,
1489 1490 1491 1492
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1493
      .def("run",
1494 1495
           [](OperatorBase &self,
              const Scope &scope,
1496 1497 1498 1499
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1500
      .def("run",
1501 1502
           [](OperatorBase &self,
              const Scope &scope,
1503 1504 1505 1506
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1507
      .def("run",
1508 1509
           [](OperatorBase &self,
              const Scope &scope,
1510 1511 1512 1513
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1514
      .def("run",
1515 1516
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1517
              const platform::CUDAPinnedPlace &place) {
1518
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1519 1520
             self.Run(scope, place);
           })
1521
      .def("run",
1522 1523
           [](OperatorBase &self,
              const Scope &scope,
1524 1525 1526 1527
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1528
      .def("run",
1529 1530
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1531 1532 1533 1534
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1535 1536 1537 1538 1539
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1540 1541
             return op.Outputs();
           })
Q
qijun 已提交
1542 1543
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1544
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1545
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1546 1547 1548 1549
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1550

1551 1552 1553
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1554 1555
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1556 1557 1558 1559 1560 1561
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1562 1563
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1564

1565 1566
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1567
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1568
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1569
      .def("close", &Executor::Close)
1570 1571
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1572
           py::call_guard<py::gil_scoped_release>())
1573 1574
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1575
           py::call_guard<py::gil_scoped_release>())
1576
      .def("init_for_dataset",
1577 1578 1579 1580
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1581
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1582
             pybind11::gil_scoped_release release;
1583 1584 1585 1586 1587 1588 1589
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1590
      .def("run_prepared_ctx",
1591 1592 1593
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1594
              std::map<std::string, const LoDTensor *> *feed_targets,
1595
              std::map<std::string, FetchType *> *fetch_targets,
1596 1597
              bool create_local_scope = true,
              bool create_vars = true,
1598 1599 1600
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1601 1602 1603 1604 1605 1606 1607 1608
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1609
           })
1610
      .def("run_prepared_ctx",
1611 1612 1613 1614 1615
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1616 1617
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1618 1619
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1620
           })
1621
      .def("prepare",
1622 1623 1624
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1625 1626 1627 1628
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1629 1630
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1631 1632
           })
      .def("create_variables", &Executor::CreateVariables)
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1649

1650
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1651
      .def(py::init<>())
1652 1653 1654 1655 1656
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1657

1658
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1659
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1660
      .def("run",
1661
           [](StandaloneExecutor &self,
1662
              Scope *scope,
1663
              std::vector<std::string> feed_names,
1664 1665 1666 1667
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1668
               ret = self.Run(scope, feed_names, fetch_names);
1669 1670 1671
             }
             return py::cast(std::move(ret));
           })
1672 1673
      .def("dry_run",
           [](StandaloneExecutor &self,
1674
              Scope *scope,
1675
              const std::unordered_map<std::string, py::array> &input_dict) {
1676
             std::vector<framework::LoDTensor> feed_tensors;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1687
             framework::interpreter::CostInfo cost_info;
1688 1689
             {
               pybind11::gil_scoped_release release;
1690
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1691 1692
             }
             return cost_info;
H
hong 已提交
1693 1694
           });

D
dzhwinter 已提交
1695
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1696
  m.def("init_glog", framework::InitGLOG);
1697 1698 1699 1700
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1701 1702 1703 1704 1705 1706 1707 1708
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1709 1710
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1711
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1712
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1713
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1714
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1715
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1716
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1717
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1718
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1719
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
1720
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1721
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1722
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1723
  m.def("supports_bfloat16", SupportsBfloat16);
1724
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1725 1726
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1727
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1728
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1729
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1730 1731 1732
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1752 1753 1754
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1755 1756
  m.def(
      "run_cmd",
1757 1758
      [](const std::string &cmd,
         int time_out = -1,
1759
         int sleep_inter = -1) -> const std::string {
1760 1761
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1762
      },
1763 1764 1765
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1766 1767
  m.def(
      "shell_execute_cmd",
1768 1769 1770
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1771
         bool redirect_stderr = false) -> std::vector<std::string> {
1772 1773
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1774
      },
1775 1776 1777
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1778
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1779

1780
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1781 1782
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1783
    return platform::GetGPUComputeCapability(place.device) >= 53;
1784
  });
1785 1786 1787 1788
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1789
#endif
1790

S
Steffy-zxf 已提交
1791
  m.def("set_feed_variable",
1792 1793 1794 1795 1796
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1797
  m.def("set_feed_variable",
1798 1799 1800 1801 1802
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1803
  m.def("get_fetch_variable",
1804 1805
        [](const Scope &scope,
           const std::string &var_name,
1806 1807 1808
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
R
Ruibiao Chen 已提交
1809
            return py::cast(PADDLE_GET(LoDTensor, var));
1810
          } else {
R
Ruibiao Chen 已提交
1811
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1812 1813
          }
        });
1814
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1815

X
Xin Pan 已提交
1816 1817
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1818 1819 1820 1821
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1822
  BindCostModel(&m);
1823
  BindConstValue(&m);
1824
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1825
  BindFleetExecutor(&m);
1826
  BindTCPStore(&m);
1827
  BindAutoParallel(&m);
1828
  BindJitProperty(&m);
Y
Yu Yang 已提交
1829

Y
Yu Yang 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1839
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1840
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1841 1842 1843

    Examples:
        .. code-block:: python
1844

Z
Zeng Jinle 已提交
1845 1846 1847
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1848 1849 1850 1851
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1852 1853
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1854 1855 1856 1857
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1858 1859 1860
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1861 1862
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1863 1864 1865
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1866 1867 1868
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1869 1870 1871 1872 1873 1874 1875
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1876 1877
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1878
             Append a LoDensor to LoDTensorArray.
1879 1880 1881 1882 1883 1884
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1896
           )DOC")
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1908

1909
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1910
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1911
        )DOC")
1912 1913 1914 1915 1916 1917
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
R
Ruibiao Chen 已提交
1918
                auto &data = PADDLE_GET(LoDTensor, self[i]);
1919 1920
                res[i] = py::cast(std::move(data));
              } else {
R
Ruibiao Chen 已提交
1921
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1933

1934 1935 1936 1937
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1938
            auto &lod_tensor = PADDLE_GET(LoDTensor, self.back());
1939 1940 1941 1942 1943 1944 1945 1946 1947
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1948
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1949 1950 1951 1952 1953 1954
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1955 1956

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1957
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1958
        )DOC")
1959 1960 1961 1962 1963 1964 1965 1966
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
R
Ruibiao Chen 已提交
1967
                  auto &var = PADDLE_GET(LoDTensor, self[i][j]);
1968 1969
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1970
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
1985

Y
Yu Yang 已提交
1986
  m.def("op_support_gpu", OpSupportGPU);
1987
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1988
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
1989
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
1990 1991 1992 1993 1994 1995 1996 1997
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
1998 1999 2000 2001 2002 2003
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2004 2005

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2031
      });
D
dangqingqing 已提交
2032

2033
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2034 2035 2036
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2037 2038 2039 2040
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2041
#endif
P
peizhilin 已提交
2042
#endif
Y
Yu Yang 已提交
2043

2044 2045
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2046
  m.def("npu_finalize", []() {
2047 2048
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2049 2050 2051
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2052
      platform::NPUDeviceGuard guard(devices[i]);
2053 2054 2055 2056
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2077 2078 2079 2080
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2081 2082 2083 2084
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2085 2086 2087 2088 2089 2090
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2091 2092 2093 2094
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2095
      .value("kAll", platform::ProfilerState::kAll)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2107
  m.def("set_tracer_option", platform::SetTracerOption);
2108 2109
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2110
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2111
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2112
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2113
    PADDLE_ENFORCE_EQ(
2114 2115
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2116 2117 2118
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2119
    callable.inc_ref();
2120 2121 2122 2123 2124 2125 2126 2127
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2128
  });
2129
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2130 2131 2132
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2133

2134
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2135 2136
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2137 2138
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2139 2140
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2141 2142 2143 2144 2145 2146 2147 2148 2149
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2150

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2214 2215
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2216 2217 2218 2219
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2220 2221 2222 2223 2224
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2225 2226 2227
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2228 2229

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2230 2231
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2232
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2233
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2234 2235
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2236 2237 2238 2239 2240 2241
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2265 2266 2267 2268 2269 2270 2271 2272
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2291 2292 2293 2294 2295 2296
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2297

2298
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2299 2300
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2301 2302
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2303
#endif  // PADDLE_WITH_CUDA
2304 2305 2306 2307 2308 2309 2310 2311
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2312

J
jianghaicheng 已提交
2313 2314
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2315 2316 2317
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2318 2319 2320 2321 2322 2323 2324
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2325
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2326 2327
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2328
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2339 2340 2341 2342
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2365 2366
                         option.get_type(),
                         option_name));
2367 2368 2369 2370 2371 2372 2373
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2374 2375
                         option_name,
                         option.first.cast<std::string>(),
2376 2377
                         option.second.cast<std::uint64_t>());
                   }
2378 2379 2380 2381 2382 2383
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2429 2430
                           option.second.get_type(),
                           option_key));
2431
                     }
2432 2433
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2434 2435 2436 2437 2438 2439
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2440 2441
                     element.second.get_type(),
                     option_name));
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2472 2473
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2474 2475 2476
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2477 2478
#endif

2479 2480 2481 2482 2483 2484 2485 2486
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2487
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2488 2489 2490 2491 2492 2493 2494 2495 2496
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2497
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2498 2499 2500 2501 2502 2503 2504
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
2519
  BindFleetWrapper(&m);
2520
  BindIO(&m);
2521 2522 2523
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2524

T
Thunderbrook 已提交
2525
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2526
  BindHeterWrapper(&m);
2527
  BindMetrics(&m);
T
Thunderbrook 已提交
2528
#endif
T
Thunderbrook 已提交
2529
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2530
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2531 2532 2533
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2534
#endif
2535
  BindGlooWrapper(&m);
H
hutuxian 已提交
2536
  BindBoxHelper(&m);
H
hutuxian 已提交
2537 2538 2539
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2540
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2541
  BindNCCLWrapper(&m);
2542 2543 2544
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2545
#endif
F
flame 已提交
2546 2547
  BindGraph(&m);
  BindNode(&m);
2548
  BindPass(&m);
F
flame 已提交
2549
  BindInferenceApi(&m);
2550
  BindCompatible(&m);
2551
  BindDataset(&m);
Y
yaoxuefeng 已提交
2552
  BindGenerator(&m);
J
JingZhuangzhuang 已提交
2553
#ifndef PADDLE_NO_PYTHON
2554 2555
  BindDistributed(&m);
#endif
2556 2557 2558
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2559
  BindAscendDevice(&m);
2560
#endif
Y
Yanghello 已提交
2561 2562 2563
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2564

T
tangwei12 已提交
2565
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2566 2567
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2568
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2569 2570
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2571 2572 2573 2574 2575
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2576 2577 2578 2579
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2580
#ifdef PADDLE_WITH_HETERPS
2581 2582
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2583 2584 2585
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2586
#endif
L
Luo Tao 已提交
2587
}
2588
}  // namespace pybind
2589
}  // namespace paddle