distribute_transpiler.py 111.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67 68 69 70
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
71 72


T
typhoonzero 已提交
73 74 75 76 77 78
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
79

T
typhoonzero 已提交
80 81
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
82 83


84 85 86 87
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
88
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
89
    """
90 91 92 93 94 95
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
96
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
97 98 99

    Args:
        var_list (list): List of variables.
100 101
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
102 103
        min_block_size (int): Minimum splitted block size.
    Returns:
104
        blocks (list[(varname, block_id, current_block_size)]): A list
105
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
106 107 108
    """
    blocks = []
    for var in var_list:
109
        split_count = slice_count
T
typhoonzero 已提交
110 111 112 113
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
114
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
115 116 117 118 119 120 121 122 123
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
124
        # update split_count after aligning
T
typhoonzero 已提交
125
        split_count = int(math.ceil(var_numel / float(block_size)))
126
        for block_id in range(split_count):
T
typhoonzero 已提交
127 128 129 130 131 132 133
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
134 135
class DistributeTranspilerConfig(object):
    """
136
    A configuration class that provide support for transpiler distributed jobs.
137 138 139
    Some important parameters are explained as follows:


H
haowang101779990 已提交
140 141
    .. py:attribute:: slice_var_up (bool)

142
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
143 144 145

    .. py:attribute:: split_method (PSDispatcher)

146 147 148 149
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
150 151 152

    .. py:attribute:: min_block_size (int)

153
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
154 155

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
156
          We can use bandwidth effiently when data size is larger than 2MB.If you
157 158 159 160
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
161

162 163 164
    Examples:
        .. code-block:: python

165 166 167
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

168 169
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
170 171
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
172 173 174 175 176
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
177
    enable_dc_asgd = False
178
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
179
    mode = "pserver"
180
    print_log = False
W
Wu Yi 已提交
181
    wait_port = True
Q
Qiao Longfei 已提交
182
    # split the send recv var in runtime
1
123malin 已提交
183 184
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
185

186 187 188 189
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

190 191 192 193 194 195 196
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

197
    # if mode is collective
198
    # supported modes: grad_allreduce, local_sgd
199 200
    collective_mode = None

201 202 203 204 205
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
206
        return self.__runtime_split_send_recv
207 208 209 210 211

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
212
        if value and self.__sync_mode:
213 214 215
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
216
        self.__runtime_split_send_recv = value
217 218 219

    @property
    def sync_mode(self):
1
123malin 已提交
220
        return self.__sync_mode
221 222 223 224 225

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
226
        if value and self.__runtime_split_send_recv:
227 228 229
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
230 231 232 233 234 235 236 237 238 239 240
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
241

G
gongweibao 已提交
242

Y
gen rst  
yi.wu 已提交
243
class DistributeTranspiler(object):
Y
yi.wu 已提交
244 245 246 247
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
248
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
249

W
Wu Yi 已提交
250 251 252 253 254 255 256 257 258
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
259 260 261 262

    Examples:
        .. code-block:: python

263 264
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
265 266 267 268 269 270 271 272
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
273 274 275 276 277 278
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
279
            role = "PSERVER"
T
Tink_Y 已提交
280 281 282 283 284 285
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
286
                                                                pserver_program)
T
Tink_Y 已提交
287 288 289 290
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
291 292
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
293 294
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
295
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
296
            t = fluid.DistributeTranspiler(config=config)
297
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
298
            exe = fluid.ParallelExecutor(
299 300 301
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
302 303
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
304
    """
Y
Yancey1989 已提交
305

G
gongweibao 已提交
306 307 308 309 310
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
311
        self._set_server_config()
G
gongweibao 已提交
312 313 314 315

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

316 317 318
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
319 320
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
321
        self.counter_var = None
G
gongweibao 已提交
322

1
123malin 已提交
323 324 325 326 327 328 329 330 331 332
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
333 334 335 336
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
337 338
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
339 340 341 342 343 344
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
345 346
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
347 348 349

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
350 351 352 353 354 355 356 357 358

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
359 360 361 362
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
363 364 365 366 367
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
368 369 370 371 372
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
373 374 375 376 377 378 379
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
380 381 382 383 384
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

385 386 387 388 389 390 391 392 393 394 395 396
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
397
        elif collective_mode != "single_process_multi_thread":
398 399
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
400 401
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
402 403 404 405 406 407 408 409 410 411
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
412
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
413
        elif collective_mode == 'local_sgd':
414
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
415 416
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
417 418 419 420 421 422 423 424 425 426 427
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
428
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
429
        sparse_update_ops = []
T
tangwei12 已提交
430
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
431 432
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
433
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
434 435 436
                sparse_update_ops.append(op)
        return sparse_update_ops

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
512

513 514
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
515 516 517 518 519 520

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
521

522 523 524 525 526
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
527
                  sync_mode=True,
W
Wu Yi 已提交
528 529
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
530
        """
531
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
532 533 534 535 536 537

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
538 539
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
540 541
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
542 543 544
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
545
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
546 547
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
548 549 550
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
551 552 553 554 555 556 557 558 559 560 561

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
562 563 564
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
565 566
        if startup_program is None:
            startup_program = default_startup_program()
567
        self.origin_program = program
W
Wu Yi 已提交
568 569
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
570

W
Wu Yi 已提交
571 572
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
573
            self.origin_program._trainers_endpoints = trainers.split(",")
574 575
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
576 577 578 579 580
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
581
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
582 583 584 585 586 587 588 589 590 591 592
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
593 594 595 596
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
597 598
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
599 600
            return

601 602 603 604 605 606 607 608 609 610 611
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

612
        self.trainer_num = trainers
613
        self.sync_mode = sync_mode
614 615 616
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
617
        self.vars_overview = VarsDistributed()
618 619
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
620
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
621 622
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
623
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
624
        self.grad_name_to_param_name = dict()
625 626
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
627
            self.grad_name_to_param_name[grad_var.name] = param_var.name
628

Q
Qiao Longfei 已提交
629
        # get all sparse update ops
Q
Qiao Longfei 已提交
630
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
631
            self.origin_program)
Q
Qiao Longfei 已提交
632
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
633
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
634
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
635

T
tangwei12 已提交
636 637 638
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
639
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
640 641 642
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

643
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
644
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
645
        self._init_splited_vars()
646

G
gongweibao 已提交
647
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
648
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
649
        send_vars = []
650 651 652 653 654 655

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
656
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
657

G
gongweibao 已提交
658
        if not self.config.slice_var_up:
659 660
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
661

662
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
663

664
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
665
            eplist = ps_dispatcher.dispatch(splited_vars)
666

G
gongweibao 已提交
667
            if not self.config.slice_var_up:
668 669
                assert (len(splited_vars) == 1)

670
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
671
            if len(splited_vars) == 1:
672
                splited_grad_varname = splited_vars[0].name
673 674
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
675

Y
Yancey1989 已提交
676
            elif len(splited_vars) > 1:
677
                orig_var = program.global_block().vars[splited_grad_varname]
678 679
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
680

Q
Qiao Longfei 已提交
681 682 683 684
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
685 686
            else:
                AssertionError("Can not insert the send op by original "
687
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
688

689 690 691 692 693 694 695
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
696 697
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
698
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
699

Q
Qiao Longfei 已提交
700 701 702 703 704 705 706 707 708 709 710
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
711 712 713 714
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
715
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
716
                index=index + 1,
717
                type="send",
Q
Qiao Longfei 已提交
718
                inputs={"X": send_input_vars},
719
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
720 721
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
722 723
                    "sections": sections,
                    "send_varnames": send_varnames,
724
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
725 726 727
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
728
                    ]
Y
Yancey1989 已提交
729
                })
Y
update  
Yancey1989 已提交
730 731
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
732 733

        if self.sync_mode:
734
            fetch_barrier_input = []
W
Wu Yi 已提交
735 736
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
737 738 739 740
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
741
            input_deps = list(self.grad_name_to_send_dummy_out.values())
742

Y
Yancey1989 已提交
743 744
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
745
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
746
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
747 748
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
749
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
750
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
751
                })
752
            fetch_barrier_input.append(send_barrier_out)
1
123malin 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        else:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
Y
Yancey1989 已提交
778

G
gongweibao 已提交
779
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
780
        recv_vars = []
Y
update  
Yancey1989 已提交
781
        for _, var in enumerate(send_vars):
782
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
783
        ps_dispatcher.reset()
Y
Yancey1989 已提交
784 785
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
786
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
787 788
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
789

790 791 792 793
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

794 795
        need_sparse_update_params = {}

Y
Yancey1989 已提交
796
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
797
        all_recv_outputs = []
798
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
799
            eps = []
Q
Qiao Longfei 已提交
800
            table_names = []
Y
Yancey1989 已提交
801 802 803
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
804
                table_names.append(var.name)
W
Wu Yi 已提交
805 806 807 808
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
809
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
810
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
811

W
Wu Yi 已提交
812 813 814 815 816 817 818 819 820
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
821
            if param_varname in self.sparse_param_to_height_sections:
822 823 824 825 826
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

827
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
828
            else:
Q
Qiao Longfei 已提交
829 830 831
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
832
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
833
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
834
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
835

Q
Qiao Longfei 已提交
836 837 838 839 840 841
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
842
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
843 844 845
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
846
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
847
                    })
848 849
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
850

851 852
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
853
        if self.sync_mode:
W
Wu Yi 已提交
854
            # form a WAW dependency
Q
qiaolongfei 已提交
855 856
            program.global_block().append_op(
                type="fetch_barrier",
857
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
858
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
859 860
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
861
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
862 863
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
864

865 866
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
867
            if param_varname not in self.sparse_param_to_height_sections:
868 869
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
870 871 872 873 874 875 876 877
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
878

G
gongweibao 已提交
879 880
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

881
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
882 883
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
884
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
885

886 887 888
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
961
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
962
        """
C
Chengmo 已提交
963 964 965 966 967 968 969 970 971
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
972 973 974

        Returns:
            Program: trainer side program.
975 976 977 978 979 980 981 982 983 984 985 986

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
987
        """
T
typhoonzero 已提交
988
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
989
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
990

T
tangwei12 已提交
991 992 993 994
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
995 996
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
997
        self._delete_trainer_optimizer(is_startup=False)
998

999
        self.origin_program.__str__()
T
tangwei12 已提交
1000
        self.startup_program.__str__()
G
gongweibao 已提交
1001

W
Wu Yi 已提交
1002 1003 1004
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1005
        return self.origin_program
T
typhoonzero 已提交
1006

W
Wu Yi 已提交
1007
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1008 1009 1010 1011
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1012
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1013
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1014 1015 1016 1017

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1018
        startup_program = self.startup_program
G
gongweibao 已提交
1019 1020 1021

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1022 1023 1024 1025
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1026

M
minqiyang 已提交
1027
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1028 1029
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1050
                inputs={"X": []},
G
gongweibao 已提交
1051 1052 1053
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1054
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1055 1056 1057
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1058 1059
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1060 1061 1062
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1063
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1064 1065
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1066
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1067 1068 1069
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1070
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1071 1072
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1073
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1074 1075
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1076
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1077
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1088 1089 1090 1091 1092 1093 1094 1095
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1096 1097
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1098 1099 1100 1101 1102 1103
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1104

Y
yi.wu 已提交
1105 1106
        Args:
            endpoint (str): current parameter server endpoint.
1107

Y
yi.wu 已提交
1108 1109
        Returns:
            Program: the program for current parameter server to run.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1124
        """
Y
yi.wu 已提交
1125 1126 1127 1128
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1129 1130 1131
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1132 1133
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1134
        pserver_program.random_seed = self.origin_program.random_seed
1135 1136
        pserver_program._copy_dist_param_info_from(self.origin_program)

1137
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1138 1139 1140 1141 1142 1143 1144 1145
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1146 1147 1148 1149 1150
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1160
            if self.sync_mode and self.trainer_num > 1:
1161
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1171

Q
qiaolongfei 已提交
1172
        # step 3
1173
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1174 1175 1176
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1177
        # step 3.2
T
typhoonzero 已提交
1178 1179 1180 1181
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1182 1183
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1184
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1185
        # step 3.3
W
Wu Yi 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1204
        # Iterate through the ops, and if an op and the optimize ops
1205
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1206
        # append it into the sub program.
T
typhoonzero 已提交
1207 1208 1209

        global_ops = []

1210 1211 1212
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1213 1214
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1215
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1216
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1217 1218
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1219
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1220
                self._append_pserver_non_opt_ops(block, op)
1221

Y
Yancey1989 已提交
1222
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1223 1224 1225 1226 1227 1228 1229 1230
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1231
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1232 1233 1234

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1235
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1236 1237

            # clone ops
Y
Yancey1989 已提交
1238 1239
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1240
                # clone sub_block of op
Y
Yancey1989 已提交
1241
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1242 1243

            # reset the block of op
W
Wu Yi 已提交
1244
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1245

1246
        # append lr decay ops to the child block if exists
1247
        lr_ops = self._get_lr_ops()
1248 1249
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1250 1251

        lr_decay_block_id = -1
1252
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1253
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1254
                pserver_program.num_blocks - 1)
1255
            optimize_blocks.append(lr_decay_block)
1256
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1257
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1258
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1259 1260
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1261
            lr_decay_block_id = lr_decay_block.idx
1262

T
typhoonzero 已提交
1263
        # append op to the current block
Q
qiaolongfei 已提交
1264
        grad_to_block_id = []
Q
qiaolongfei 已提交
1265
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1266
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1267
            per_opt_block = pserver_program._create_block(pre_block_idx)
1268
            optimize_blocks.append(per_opt_block)
1269
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1270
            # append grad merging ops before clip and weight decay
1271 1272
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1273
            for _, op in enumerate(self.optimize_ops):
1274
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1275
                # merged_var should be the input var name of L2Decay
1276 1277 1278
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1279 1280 1281
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1282 1283 1284 1285 1286 1287
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1288
                            op not in global_ops:
1289 1290 1291 1292 1293
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1294

1295
        # dedup grad to ids list
W
Wu Yi 已提交
1296
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1297
        # append global ops
1298
        if global_ops:
W
Wu Yi 已提交
1299
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1300
                pserver_program.num_blocks - 1)
1301
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1302
            for glb_op in global_ops:
X
Xi Chen 已提交
1303
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1304
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1305

1306
        # process distributed lookup_table
Q
qiaolongfei 已提交
1307
        prefetch_var_name_to_block_id = []
1308 1309
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1310
            table_opt_block = self._create_table_optimize_block(
1311
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1312
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1313
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1314
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1315 1316
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1317

T
tangwei12 已提交
1318
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1319 1320
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1321

1322
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1323 1324
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1325 1326 1327 1328 1329 1330
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1331
        attrs = {
1332
            "optimize_blocks": optimize_blocks,
1333
            "endpoint": endpoint,
1334
            "pserver_id": self.pserver_endpoints.index(endpoint),
1335 1336
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1337
            "grad_to_block_id": grad_to_block_id,
1338
            "sparse_grad_to_param": sparse_grad_to_param,
1339
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1340 1341 1342 1343
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1344
        }
T
tangwei12 已提交
1345 1346

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1347
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1348 1349
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1350

T
tangwei12 已提交
1351 1352 1353 1354
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1355 1356 1357 1358 1359
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1360
            attrs=attrs)
1361

W
Wu Yi 已提交
1362
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1363 1364
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1365 1366
        return pserver_program

W
Wu Yi 已提交
1367 1368 1369
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1370 1371
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1372 1373 1374

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1375

W
Wu Yi 已提交
1376 1377
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1392 1393
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1394 1395
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1396 1397
        return pserver_prog, pserver_startup

1398 1399
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1400
                            pserver_program=None,
1401
                            startup_program=None):
T
typhoonzero 已提交
1402
        """
W
Wu Yi 已提交
1403 1404
        **Deprecated**

T
typhoonzero 已提交
1405 1406 1407
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1408 1409 1410

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1411 1412
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1413
                when initalizing
1414

Y
yi.wu 已提交
1415 1416
        Returns:
            Program: parameter server side startup program.
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1432 1433
        """
        s_prog = Program()
W
Wu Yi 已提交
1434
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1435
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1447
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1448
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1449
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1450 1451 1452 1453
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1454
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1455 1456
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1467 1468

            if op_on_pserver:
1469 1470 1471
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1472
                if op.type in [
1473 1474
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1475
                ]:
W
Wu Yi 已提交
1476
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1477 1478 1479 1480
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1481
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1491

T
typhoonzero 已提交
1492 1493
        return s_prog

1494 1495
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1496
        block_suffix = "block"
1497 1498 1499
        block_idx = 0
        offset = 0
        is_slice = False
1500

1501
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1502

1503 1504
        if not block_name:
            return is_slice, block_idx, offset
1505

1506 1507 1508 1509
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1510 1511 1512 1513 1514
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1540 1541 1542 1543
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1581

Y
yi.wu 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1621
    def _init_splited_vars(self):
Y
yi.wu 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1645
        if self.config.slice_var_up:
Y
yi.wu 已提交
1646 1647
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1648 1649 1650
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1651
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1652 1653
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1654 1655 1656
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1657 1658 1659 1660
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1661 1662
        assert (len(grad_blocks) == len(param_blocks))

1663
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1664 1665
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1682
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1683 1684 1685 1686
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1687
        # dict(grad_splited_var -> param_splited_var)
1688
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1689 1690 1691
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1692
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1693
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1694 1695

        # create mapping of endpoint -> split var to create pserver side program
1696
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1706
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1707 1708
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1709
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1710
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1711 1712
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1713 1714
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1715 1716 1717 1718 1719 1720

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1721 1722
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1723
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1724 1725 1726
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1727 1728
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1729 1730
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1731 1732 1733
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1734
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1735
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1736 1737

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1738
                    self.all_out_emb_vars.append(out_var)
1739 1740

                    # delete lookup_table_op
1741
                    delete_ops(program.global_block(), [op])
1742 1743 1744
                    # break for loop
                    break

S
seiriosPlus 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1791
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1792
        # 2. add split_ids_op and send_op to send gradient to pservers
1793

1794 1795
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1796
        table_grad_name = grad_var_name(self.table_name)
1797 1798 1799 1800
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1801
                program.global_block()._insert_op(
1802 1803 1804 1805 1806
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1807 1808
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1809
                program.global_block()._insert_op(
1810
                    index=op_index + 2,
1811
                    type="send",
1812
                    inputs={'X': self.trainer_side_table_grad_list},
1813 1814 1815 1816 1817
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1818 1819
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1820
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1821 1822 1823 1824 1825
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1826
                    })
1827 1828 1829 1830 1831 1832
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1833
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1859
        return prefetch_var_name_to_block_id
1860 1861

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1862
                                     pre_block_idx, grad_to_block_id):
1863
        # STEP: create table optimize block
1864
        table_opt_block = pserver_program._create_block(pre_block_idx)
1865
        # create table param and grad var in pserver program
1866 1867
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1868 1869 1870
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1871 1872
        ][0]

Y
Yancey1989 已提交
1873 1874
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1875

T
tangwei12 已提交
1876
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1877 1878
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1879 1880 1881
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1882 1883
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1884
            shape=table_shape,
Y
Yancey1989 已提交
1885 1886 1887
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1888

1889 1890
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1891
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1892
            self.origin_program.global_block().vars[grad_var_name(
1893
                self.table_name)])
1894

1895 1896 1897
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1898

1899 1900 1901
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1902
            pserver_side_table_grad_list = [
1903 1904 1905 1906 1907 1908 1909 1910 1911
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1912
            # append sum op for pserver_side_table_grad_list
1913 1914
            table_opt_block.append_op(
                type="sum",
1915
                inputs={"X": pserver_side_table_grad_list},
1916 1917
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1918 1919
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1920
            origin_grad_name = grad_var.name
1921 1922
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1923 1924
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1925
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1926
            grad_var = pserver_program.global_block()._rename_var(
1927
                origin_grad_name, splited_grad_name)
1928 1929 1930 1931 1932 1933 1934

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1935
        # only support sgd now
1936 1937 1938
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1939
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1940

1941 1942 1943
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1944 1945
        return table_opt_block

T
tangwei12 已提交
1946 1947 1948 1949 1950
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1951
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1952
            name="kLookupTablePath",
T
tangwei12 已提交
1953 1954
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1955

W
Wu Yi 已提交
1956
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1957
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1958 1959 1960 1961
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1962
            attrs={'file_path': "none"})
T
tangwei12 已提交
1963 1964 1965

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1966 1967 1968 1969 1970
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1971
        Create vars for each split.
T
typhoonzero 已提交
1972 1973
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1974 1975 1976 1977
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1978
        Returns:
1979
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1980
                from original var name to each var split.
T
typhoonzero 已提交
1981
        """
1982 1983

        # varname->[(block_id, current_block_size)]
1984
        block_map = collections.OrderedDict()
1985

1986
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1987 1988
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1989
            if varname not in block_map:
T
typhoonzero 已提交
1990
                block_map[varname] = []
1991
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1992

M
minqiyang 已提交
1993
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1994
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1995
            if len(splited) == 1:
1996
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1997
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1998
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1999
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2000 2001 2002 2003 2004
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2005
                continue
T
typhoonzero 已提交
2006
            var_mapping[varname] = []
T
typhoonzero 已提交
2007 2008 2009 2010
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2011

T
typhoonzero 已提交
2012
            for i, block in enumerate(splited):
T
typhoonzero 已提交
2013
                size = block[1]
M
minqiyang 已提交
2014
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2015 2016 2017
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2018
                new_var_name = ""
2019
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2020
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2021
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2022 2023
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2024
                                   (varname, i)
T
typhoonzero 已提交
2025
                var = program.global_block().create_var(
T
typhoonzero 已提交
2026 2027
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2028
                    dtype=orig_var.dtype,
2029
                    type=orig_var.type,
T
typhoonzero 已提交
2030
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2031
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2032
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2033
        return var_mapping
T
done  
typhoonzero 已提交
2034

2035
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2036 2037 2038 2039 2040 2041
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2042
            persistable=persistable)
T
done  
typhoonzero 已提交
2043

Q
Qiao Longfei 已提交
2044 2045 2046 2047 2048 2049 2050
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2051
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2052 2053
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2054
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2055
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2056
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2057 2058
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2059
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2060 2061 2062 2063
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2064 2065 2066 2067
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2068
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2069
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2070 2071 2072 2073
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2074
                attrs={
Q
Qiao Longfei 已提交
2075
                    "sections": height_sections,
2076 2077
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2078 2079 2080
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2081

T
typhoonzero 已提交
2082 2083 2084 2085
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2086
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2099
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2100 2101
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2102 2103
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2104
                return param_shape
2105 2106 2107
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2108 2109 2110
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2111 2112
        elif op_type == "sgd":
            pass
2113 2114 2115 2116
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2117 2118
        return orig_shape

2119 2120
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2121
        orig_var_name = ""
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2132
        else:
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2155
            return None
2156 2157 2158 2159
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2160
        else:
2161
            merged_var_name = orig_varname
2162 2163

        merged_var = pserver_block.vars[merged_var_name]
2164 2165 2166
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2167
            for i in range(self.trainer_num):
2168
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2169
                                   (merged_var_name, i)
2170 2171 2172 2173
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2174 2175
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2176 2177 2178 2179 2180
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2181
        return merged_var
T
typhoonzero 已提交
2182

W
Wu Yi 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2245
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2246 2247
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2248
        program = optimize_block.program
T
typhoonzero 已提交
2249
        pserver_block = program.global_block()
2250
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2261 2262 2263 2264
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2265
        for key in opt_op.input_names:
T
typhoonzero 已提交
2266
            if key == "Grad":
W
Wu Yi 已提交
2267 2268 2269
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2280
            elif key == "Param":
W
Wu Yi 已提交
2281
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2282 2283
                if not param_block:
                    return
T
typhoonzero 已提交
2284
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2285
                    name=param_block.name,
T
typhoonzero 已提交
2286
                    persistable=True,
T
typhoonzero 已提交
2287 2288 2289
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2290
            elif key == "LearningRate":
2291
                # learning rate variable has already be created by non-optimize op,
2292
                # don't create it once again.
2293
                lr_varname = opt_op.input(key)[0]
2294
                if lr_varname in pserver_block.vars:
2295 2296 2297 2298 2299 2300 2301 2302 2303
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2304

T
typhoonzero 已提交
2305
        for key in opt_op.input_names:
2306
            new_shape = None
2307 2308 2309 2310
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2311
                continue
2312
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2313
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2314
            # update accumulator variable shape
2315 2316
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2317
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2318 2319 2320 2321 2322
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2323

2324
        # change output's ParamOut variable
2325 2326
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2327
        outputs["ParamOut"] = new_inputs["Param"]
2328
        optimize_block.append_op(
T
typhoonzero 已提交
2329 2330
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2331
            outputs=outputs,
G
gongweibao 已提交
2332
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2333

2334 2335 2336 2337 2338 2339
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2351
        grad_block = None
M
minqiyang 已提交
2352
        for _, g in six.iteritems(var_dict):
2353
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2354
                # skip per trainer vars
2355
                if g.name.find(".trainer_") == -1:
2356
                    # only param or grads have splited blocks
2357 2358
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2359 2360
                        grad_block = g
                        break
2361 2362
        return grad_block

Q
Qiyang Min 已提交
2363 2364 2365
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2366
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2367 2368 2369 2370
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2371
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2372 2373 2374

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2375
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2376 2377 2378 2379
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2380
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2381

Y
Yancey1989 已提交
2382
        return block.append_op(
G
gongweibao 已提交
2383
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2384 2385

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2386
        program = optimize_block.program
2387
        # Append the ops for parameters that do not need to be optimized/updated
2388 2389
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2390
        for key, varlist in six.iteritems(inputs):
2391 2392
            if not isinstance(varlist, list):
                varlist = [varlist]
2393 2394 2395
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2396
                # for inputs/outputs
2397
                grad_block = self._get_pserver_grad_param_var(
2398 2399
                    var, program.global_block().vars)
                if grad_block:
2400
                    varlist[i] = grad_block
2401
                elif var.name not in program.global_block().vars:
2402 2403 2404 2405 2406
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2407

2408 2409
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2410
        for key, varlist in six.iteritems(outputs):
2411 2412
            if not isinstance(varlist, list):
                varlist = [varlist]
2413 2414 2415
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2416 2417
                    var, program.global_block().vars)
                if grad_block:
2418
                    varlist[i] = grad_block
2419
                elif var.name not in program.global_block().vars:
2420 2421 2422 2423 2424
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2425

Y
Yancey1989 已提交
2426
        return optimize_block.append_op(
T
typhoonzero 已提交
2427
            type=opt_op.type,
T
typhoonzero 已提交
2428 2429
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2430
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2431

2432 2433 2434 2435
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2436
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2437
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2438 2439 2440 2441 2442 2443
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2444 2445
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2446 2447 2448 2449 2450 2451
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2452
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2453
        if "Param" in op.input_names and \
T
tangwei12 已提交
2454
                "LearningRate" in op.input_names:
2455 2456 2457 2458 2459 2460 2461
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2462
        if op.input("Param")[0] in param_names:
2463 2464 2465
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2466
                param = op.input("Param")[0]
T
typhoonzero 已提交
2467
                if same_or_split_var(n, param) and n != param:
2468 2469 2470
                    return True
            return False

T
typhoonzero 已提交
2471
    def _get_input_map_from_op(self, varmap, op):
2472
        """Returns a dict from op input name to the vars in varmap."""
2473
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2485
        """Returns a dict from op output name to the vars in varmap."""
2486
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2496 2497

    def _get_lr_ops(self):
2498 2499
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2500
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2501 2502 2503 2504
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2551 2552 2553 2554 2555
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2556 2557 2558 2559
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2560
            if self._is_optimizer_op(op):
2561 2562 2563 2564
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2565
        block = self.origin_program.global_block()
2566 2567 2568 2569 2570
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2571

2572 2573 2574 2575 2576
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2577
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2578 2579 2580 2581 2582 2583
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2584 2585
                    # we only need to append op for once
                    break
2586
        return lr_ops
Y
Yancey1989 已提交
2587

W
Wu Yi 已提交
2588 2589 2590 2591 2592
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2593 2594
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2595 2596 2597
            return True
        return False

Y
Yancey1989 已提交
2598
    def _get_optimize_pass(self):
2599
        """
2600
        Get optimizer operators, parameters and gradients from origin_program
2601 2602
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2603
            params_grads (dict): parameter->gradient.
2604
        """
Y
Yancey1989 已提交
2605 2606 2607
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2608 2609
        # tmp set to dedup
        optimize_params = set()
2610
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2611
        for op in block.ops:
W
Wu Yi 已提交
2612
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode 
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2623
                opt_ops.append(op)
2624 2625 2626 2627 2628 2629
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2630 2631
                        params_grads.append([
                            origin_var_dict[param_name],
2632
                            origin_var_dict[grad_name]
2633
                        ])
Y
Yancey1989 已提交
2634 2635
            else:
                pass
C
Chengmo 已提交
2636 2637 2638 2639 2640 2641

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2642
        return opt_ops, params_grads
C
Chengmo 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

    def _get_distribute_update_vars(self):
        #TODO(chengmo): find more powerful and simple way to deal with these special situation
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads