gan_api.md 7.5 KB
Newer Older
Z
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Design for GAN

GAN (General Adversarial Net) is an important model for unsupervised learning and widely used in many areas. 

It contains several important machine learning concepts, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.

In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN as an example due to its good performance on image generation.

## The Conditional-GAN might be a class. 
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:

### DCGAN(object):
which contains everything required to build a GAN model. It provides following member functions methods as API:

### __init__(...):
Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.

### generator(z, y=None):
Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
Returns a generated image.

### discriminator(image):
Given an image, decide if it is from a real source or a fake one. 
Returns a 0/1 binary label.

### build_model(self):
build the whole GAN model, define training loss for both generator and discrimator.
Z
zchen0211 已提交
28 29 30

<p align="center">
<img src="./dcgan.png" width = "90%" align="center"/><br/>
Z
zchen0211 已提交
31
Borrow this photo from the original DC-GAN paper.
Z
zchen0211 已提交
32 33
</p>

Z
zchen0211 已提交
34 35 36 37 38 39 40 41 42
## Discussion on Engine Functions required to build GAN
- Trace the ternsor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
- Different optimizers responsible for optimizing different loss.

To be more detailed, we introduce our design of DCGAN as following:

### Class member Function: Initializer
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
Z
gan api  
zchen0211 已提交
43
```python
Z
zchen0211 已提交
44 45 46 47 48 49 50 51 52
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
Z
zchen0211 已提交
53
    self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
Z
gan api  
zchen0211 已提交
54
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
55 56 57 58
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
59
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
Z
zchen0211 已提交
60 61

    # define parameters of generators
Z
gan api  
zchen0211 已提交
62 63
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
64 65 66 67
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
68 69
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
Z
zchen0211 已提交
70

Z
zchen0211 已提交
71 72 73 74
### Class member Function: Generator
- Given a noisy input z, returns a fake image.
- Concatenation, batch-norm, FC operations required;
- Deconv layer required, which is missing now...
Z
gan api  
zchen0211 已提交
75
```python
Z
zchen0211 已提交
76
def generator(self, z, y = None):
Z
zchen0211 已提交
77 78 79 80
    # input z: the random noise
    # input y: input data label (optional)
    # output G_im: generated fake images
    
Z
zchen0211 已提交
81 82 83 84 85 86 87
    if not self.y_dim:
      z = pd.concat(1, [z, y])
      
    G_h0 = pd.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.batch_norm(G_h0)
    G_h0_relu = pd.relu(G_h0_bn)
    
Z
zchen0211 已提交
88
    G_h1 = pd.deconv(G_h0_relu, self.G_w1, self.G_b1)
Z
zchen0211 已提交
89 90 91 92 93 94
    G_h1_bn = pd.batch_norm(G_h1)
    G_h1_relu = pd.relu(G_h1_bn)
    
    G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.tanh(G_im)
    return G_im
Z
gan api  
zchen0211 已提交
95 96
```

Z
zchen0211 已提交
97 98 99
### Class member function: Discriminator
- Given a noisy input z, returns a fake image.
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
Z
gan api  
zchen0211 已提交
100
```python
Z
zchen0211 已提交
101
def discriminator(self, image):
Z
zchen0211 已提交
102 103
    # input image: either generated images or real ones
    # output D_h2: binary logit of the label
Z
zchen0211 已提交
104 105 106 107 108 109 110 111 112 113 114

    D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
    D_h0_bn = pd.batchnorm(h0)
    D_h0_relu = pd.lrelu(h0_bn)
    
    D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
    D_h1_bn = pd.batchnorm(D_h1)
    D_h1_relu = pd.lrelu(D_h1_bn)
    
    D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
    return D_h2
Z
gan api  
zchen0211 已提交
115
```
Z
zchen0211 已提交
116 117

### Class member function: Build the model
Z
zchen0211 已提交
118 119 120
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
- Define two training losses for discriminator and generator, respectively. 
Z
gan api  
zchen0211 已提交
121
```python
Z
zchen0211 已提交
122 123 124 125 126 127 128 129 130
def build_model(self):

    # input data
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
Z
zchen0211 已提交
131 132
    # step 1: generate images by generator, classify real/fake images with discriminator
    if self.y_dim: # if conditional GAN, includes label
Z
zchen0211 已提交
133 134 135 136 137 138 139 140 141 142 143 144
      self.G = self.generator(self.z, self.y)
      self.D_t = self.discriminator(self.images)
      # generated fake images
      self.sampled = self.sampler(self.z, self.y)
      self.D_f = self.discriminator(self.images)
    else: # original version of GAN
      self.G = self.generator(self.z)
      self.D_t = self.discriminator(self.images)
      # generate fake images
      self.sampled = self.sampler(self.z)
      self.D_f = self.discriminator(self.images)
    
Z
zchen0211 已提交
145
    # step 2: define the two losses
Z
zchen0211 已提交
146 147 148 149 150
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
Z
gan api  
zchen0211 已提交
151
```
Z
zchen0211 已提交
152

Z
zchen0211 已提交
153
## Main function for the demo:
Z
gan api  
zchen0211 已提交
154
```python
Z
zchen0211 已提交
155 156 157 158 159
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

Z
zchen0211 已提交
160 161 162 163 164 165 166 167 168 169
if __name__ == "__main__":

    # dcgan
    dcgan = DCGAN()
    dcgan.build_model()

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
Z
gan api  
zchen0211 已提交
170
    d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss, )
Z
zchen0211 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
Z
gan api  
zchen0211 已提交
186
          sess.eval(d_optim, 
Z
zchen0211 已提交
187 188 189 190
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
Z
gan api  
zchen0211 已提交
191
          sess.eval(g_optim,
Z
zchen0211 已提交
192
                   feed_dict = {dcgan.z: batch_z})
Z
gan api  
zchen0211 已提交
193
```