binary.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import _C_ops
16
from paddle.fluid.framework import dygraph_only, core
17 18 19

__all__ = []

20 21 22 23 24 25 26 27 28
_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
    core.VarDesc.VarType.BOOL,
]

29 30 31 32

@dygraph_only
def matmul(x, y, name=None):
    """
33 34
    Note:    
        This API is only supported from ``CUDA 11.0`` .
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    Applies matrix multiplication of two Tensors. 
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor]
        x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor]
        x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor]
        x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , where `*` 
    is zero or more batch dimensions.

    Args:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        y (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Its layout is determined by that of `x` and `y` .

    Examples:

        .. code-block:: python

            import paddle

            # csr @ dense -> dense
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            crows = [0, 1, 2, 3]
            cols = [1, 2, 0]
            values = [1., 2., 3.]
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
            # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
            #        crows=[0, 1, 2, 3], 
            #        cols=[1, 2, 0], 
            #        values=[1., 2., 3.])
            dense = paddle.ones([3, 2])
            out = paddle.incubate.sparse.matmul(csr, dense)
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])

            # coo @ dense -> dense
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1., 2., 3.]
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, [3, 3])
            # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
            #        indices=[[0, 1, 2],
            #                 [1, 2, 0]], 
            #        values=[1., 2., 3.])
            dense = paddle.ones([3, 2])
            out = paddle.incubate.sparse.matmul(coo, dense)
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])
96 97 98 99 100 101 102
    """
    return _C_ops.final_state_sparse_matmul(x, y)


@dygraph_only
def masked_matmul(x, y, mask, name=None):
    """
103 104
    Note:    
        This API is only supported from ``CUDA 11.3`` .
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    Applies matrix multiplication of two Dense Tensors. 
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCooTensor] -> out[SparseCooTensor]
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCsrTensor] -> out[SparseCsrTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be  >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , and the shape of `mask` should be `[*, M, N]` ,
    where `*` is zero or more batch dimensions.

    Args:
        x (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        y (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        mask (Tensor): The mask tensor, which can be SparseCooTensor/SparseCsrTensor. It specify sparse coordinates. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, which is determined by that of `mask` .

    Examples:

        .. code-block:: python

            import paddle
            paddle.seed(100)

            # dense @ dense * csr_mask -> csr
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1., 2., 3., 4., 5.]
            dense_shape = [3, 4]
            mask = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1., 2., 3., 4., 5.])

            x = paddle.rand([3, 5])
            y = paddle.rand([5, 4])

            out = paddle.incubate.sparse.masked_matmul(x, y, mask)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
            #        crows=[0, 2, 3, 5], 
            #        cols=[1, 3, 2, 0, 1], 
            #        values=[0.98986477, 0.97800624, 1.14591956, 0.68561077, 0.94714981])
155 156 157

    """
    return _C_ops.final_state_sparse_masked_matmul(x, y, mask)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213


@dygraph_only
def mv(x, vec, name=None):
    """
    Note:    
        This API is only supported from ``CUDA 11.0`` .

    Applies matrix-vector product of Sparse Matrix 'x' and Dense vector 'vec' . 
    
    The supported input/output Tensor layout are as follows:

    Note:
        x[SparseCsrTensor] @ y[DenseTensor] -> out[SparseCsrTensor]
        x[SparseCooTensor] @ y[DenseTensor] -> out[SparseCooTensor]

    It supports backward propagation.

    The shape of `x` should be `[M, N]` , and the shape of `y` should be `[N]` , 
    and the shape of `out` will be `[M]` .

    Args:
        x (Tensor): The input 2D tensor. It must be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        y (Tensor): The input 1D tensor. It must be DenseTensor vector. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: 1D Tensor.

    Examples:

        .. code-block:: python
        
            import paddle
            from paddle.fluid.framework import _test_eager_guard 
            paddle.seed(100)

            # csr @ dense -> dense
            with _test_eager_guard():         
                crows = [0, 2, 3, 5]
                cols = [1, 3, 2, 0, 1]
                values = [1., 2., 3., 4., 5.]
                dense_shape = [3, 4]
                csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
                # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 3, 5], 
                #        cols=[1, 3, 2, 0, 1], 
                #        values=[1., 2., 3., 4., 5.])
                vec = paddle.randn([4])
                
                out = paddle.incubate.sparse.mv(csr, vec)
                # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
                #        [-3.85499096, -2.42975140, -1.75087738])

    """
    return _C_ops.final_state_sparse_mv(x, vec)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401


def add(x, y, name=None):
    """
    Add two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x + y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
            sparse_z = paddle.incubate.sparse.add(sparse_x, sparse_y)
            print(sparse_z.to_dense())

        # [[ 0., -1.,  0.,  0.],
        # [ 0.,  2., -6.,  0.],
        # [ 6.,  8.,  4.,  8.]]

    """
    if y.dtype != x.dtype:
        y = _C_ops.final_state_sparse_cast(y, None, x.dtype)
    return _C_ops.final_state_sparse_add(x, y)


@dygraph_only
def subtract(x, y, name=None):
    """
    Subtract two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x - y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
            sparse_z = paddle.incubate.sparse.subtract(sparse_x, sparse_y)
            print(sparse_z.to_dense())

        # [[ 0., -1.,  0.,  4.],
        # [ 0., -2.,  0.,  0.],
        # [ 2.,  2., -4., -8.]]

    """
    if y.dtype != x.dtype:
        y = _C_ops.final_state_sparse_cast(y, None, x.dtype)
    return _C_ops.final_state_sparse_subtract(x, y)


@dygraph_only
def multiply(x, y, name=None):
    """
    Multiply two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x * y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
            sparse_z = paddle.incubate.sparse.multiply(sparse_x, sparse_y)
            print(sparse_z.to_dense())

        # [[ 0.,  0.,  0., -4.],
        # [ 0.,  0.,  9.,  0.],
        # [ 8., 15.,  0.,  0.]]

    """
    if isinstance(y, (int, float)):
        return _C_ops.final_state_sparse_scale(x, float(y), 0.0, True)
    else:
        if y.dtype != x.dtype:
            y = _C_ops.final_state_sparse_cast(y, None, x.dtype)
        return _C_ops.final_state_sparse_multiply(x, y)


@dygraph_only
def divide(x, y, name=None):
    """
    Divide two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x / y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
            sparse_z = paddle.incubate.sparse.divide(sparse_x, sparse_y)
            print(sparse_z.to_dense())

        # [[ nan      , -inf.     ,  nan      , -1.       ],
        # [ nan      ,  0.       ,  1.       ,  nan      ],
        # [ 2.       , 1.66666663,  0.       ,  0.       ]]

    """
    if x.dtype in _int_dtype_:
        x = _C_ops.final_state_sparse_cast(x, None, core.VarDesc.VarType.FP32)

    if isinstance(y, (int, float)):
        return _C_ops.final_state_sparse_divide_scalar(x, float(y))
    else:
        if y.dtype != x.dtype:
            y = _C_ops.final_state_sparse_cast(y, None, x.dtype)
        return _C_ops.final_state_sparse_divide(x, y)