test_imperative_data_loader.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import core


def get_random_images_and_labels(image_shape, label_shape):
    image = np.random.random(size=image_shape).astype('float32')
    label = np.random.random(size=label_shape).astype('int64')
    return image, label


def sample_generator_creator(batch_size, batch_num):
    def __reader__():
        for _ in range(batch_num * batch_size):
            image, label = get_random_images_and_labels([784], [1])
            yield image, label

    return __reader__


def batch_generator_creator(batch_size, batch_num):
    def __reader__():
        for _ in range(batch_num):
            batch_image, batch_label = get_random_images_and_labels(
                [batch_size, 784], [batch_size, 1])
            yield batch_image, batch_label

    return __reader__


class TestDygraphhDataLoader(unittest.TestCase):
    def setUp(self):
        self.batch_size = 8
        self.batch_num = 4
51 52
        self.epoch_num = 1
        self.capacity = 5
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    def test_single_process_reader(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, iterable=False, use_multiprocess=False)
            loader.set_sample_generator(
                sample_generator_creator(self.batch_size, self.batch_num),
                batch_size=self.batch_size,
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])

    def test_sample_genarator(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, use_multiprocess=True)
            loader.set_sample_generator(
                sample_generator_creator(self.batch_size, self.batch_num),
                batch_size=self.batch_size,
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])

    def test_batch_genarator(self):
        with fluid.dygraph.guard():
            loader = fluid.io.DataLoader.from_generator(
                capacity=self.capacity, use_multiprocess=True)
            loader.set_batch_generator(
                batch_generator_creator(self.batch_size, self.batch_num),
                places=fluid.CPUPlace())
            for _ in range(self.epoch_num):
                for image, label in loader():
                    relu = fluid.layers.relu(image)
                    self.assertEqual(image.shape, [self.batch_size, 784])
                    self.assertEqual(label.shape, [self.batch_size, 1])
                    self.assertEqual(relu.shape, [self.batch_size, 784])


if __name__ == '__main__':
    unittest.main()