gpu_info.cc 15.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
16
#include <algorithm>
S
sneaxiy 已提交
17
#include <cstdlib>
18
#include <memory>
L
liaogang 已提交
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/platform/cuda_device_guard.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23 24
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
25
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
26

27 28 29 30 31
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_string(selected_gpus);
32
DECLARE_uint64(gpu_memory_limit_mb);
33

Z
zhhsplendid 已提交
34 35
constexpr static float fraction_reserve_gpu_memory = 0.05f;

L
liaogang 已提交
36 37 38
namespace paddle {
namespace platform {

39 40 41 42 43
/* Here is a very simple CUDA “pro tip”: cudaDeviceGetAttribute() is a much
faster way to query device properties. You can see details in
https://devblogs.nvidia.com/cuda-pro-tip-the-fast-way-to-query-device-properties/
*/

S
sneaxiy 已提交
44
static int GetCUDADeviceCountImpl() {
45 46 47 48 49
  int driverVersion = 0;
  cudaError_t status = cudaDriverGetVersion(&driverVersion);

  if (!(status == cudaSuccess && driverVersion != 0)) {
    // No GPU driver
50
    VLOG(2) << "GPU Driver Version can't be detected. No GPU driver!";
51 52 53
    return 0;
  }

S
sneaxiy 已提交
54 55 56 57 58 59
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
S
sneaxiy 已提交
60
      VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be empty. No GPU detected.";
S
sneaxiy 已提交
61 62 63
      return 0;
    }
  }
L
liaogang 已提交
64
  int count;
65
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetDeviceCount(&count));
L
liaogang 已提交
66 67 68
  return count;
}

S
sneaxiy 已提交
69 70 71 72 73
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

74
int GetCUDAComputeCapability(int id) {
75 76 77 78 79
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
80 81 82 83 84 85
  int major, minor;

  auto major_error_code =
      cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, id);
  auto minor_error_code =
      cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, id);
86 87
  PADDLE_ENFORCE_CUDA_SUCCESS(major_error_code);
  PADDLE_ENFORCE_CUDA_SUCCESS(minor_error_code);
88
  return major * 10 + minor;
89 90
}

91
dim3 GetGpuMaxGridDimSize(int id) {
92 93 94 95 96
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
97 98 99
  dim3 ret;
  int size;
  auto error_code_x = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimX, id);
100
  PADDLE_ENFORCE_CUDA_SUCCESS(error_code_x);
101 102 103
  ret.x = size;

  auto error_code_y = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimY, id);
104
  PADDLE_ENFORCE_CUDA_SUCCESS(error_code_y);
105 106 107
  ret.y = size;

  auto error_code_z = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimZ, id);
108
  PADDLE_ENFORCE_CUDA_SUCCESS(error_code_z);
109 110 111 112
  ret.z = size;
  return ret;
}

C
chengduo 已提交
113
int GetCUDARuntimeVersion(int id) {
114 115 116 117 118
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduo 已提交
119
  int runtime_version = 0;
120
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaRuntimeGetVersion(&runtime_version));
C
chengduo 已提交
121 122 123 124
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
125 126 127 128 129
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduo 已提交
130
  int driver_version = 0;
131
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaDriverGetVersion(&driver_version));
C
chengduo 已提交
132 133 134
  return driver_version;
}

135 136 137 138 139 140 141 142 143 144
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
145
int GetCUDAMultiProcessors(int id) {
146 147 148 149 150
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduoZH 已提交
151
  int count;
152 153
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id));
C
chengduoZH 已提交
154 155 156 157
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
158 159 160 161 162
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
C
chengduoZH 已提交
163
  int count;
164 165
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaDeviceGetAttribute(
      &count, cudaDevAttrMaxThreadsPerMultiProcessor, id));
C
chengduoZH 已提交
166 167 168
  return count;
}

169
int GetCUDAMaxThreadsPerBlock(int id) {
170 171 172 173 174
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
175
  int count;
176 177
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaDeviceGetAttribute(&count, cudaDevAttrMaxThreadsPerBlock, id));
178 179 180
  return count;
}

L
liaogang 已提交
181 182
int GetCurrentDeviceId() {
  int device_id;
183
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetDevice(&device_id));
L
liaogang 已提交
184 185 186
  return device_id;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
205
void SetDeviceId(int id) {
Q
qijun 已提交
206
  // TODO(qijun): find a better way to cache the cuda device count
207 208 209 210 211 212
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(),
                    platform::errors::InvalidArgument(
                        "Device id must be less than GPU count, "
                        "but received id is: %d. GPU count is: %d.",
                        id, GetCUDADeviceCount()));
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaSetDevice(id));
L
liaogang 已提交
213 214
}

215
void GpuMemoryUsage(size_t *available, size_t *total) {
216 217 218
  size_t actual_available, actual_total;
  RecordedCudaMemGetInfo(available, total, &actual_available, &actual_total,
                         platform::GetCurrentDeviceId());
L
liaogang 已提交
219 220
}

221
size_t GpuAvailableMemToAlloc() {
L
liaogang 已提交
222 223
  size_t total = 0;
  size_t available = 0;
224
  GpuMemoryUsage(&available, &total);
225 226
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
227
  // If available size is less than minimum chunk size, no usable memory exists
228
  size_t available_to_alloc = available - reserving;
229
  size_t min_chunk_size = GpuMinChunkSize();
230 231 232
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
233 234 235
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
Z
zhhsplendid 已提交
236 237
}

238 239 240
size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}
Z
zhhsplendid 已提交
241

242 243 244 245 246 247 248 249 250 251
static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(available_to_alloc, 0, "No enough available GPU memory");
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
252
  PADDLE_ENFORCE_GE(available_to_alloc, alloc_bytes,
253 254 255 256 257
                    "No enough available GPU memory");
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}
Z
zhhsplendid 已提交
258

259
size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }
Z
zhhsplendid 已提交
260

261
size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }
L
liaogang 已提交
262

L
liaogang 已提交
263 264 265 266 267 268
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
269 270 271
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
L
liaogang 已提交
272 273
}

L
liaogang 已提交
274 275
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
276
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(dst, src, count, kind, stream));
L
liaogang 已提交
277 278
}

279 280
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
281
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpy(dst, src, count, kind));
282 283 284 285
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
286 287
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream));
288 289 290 291
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
292 293
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaMemcpyPeer(dst, dst_device, src, src_device, count));
L
liaogang 已提交
294
}
D
dzhwinter 已提交
295 296

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
297
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(dst, value, count, stream));
D
dzhwinter 已提交
298
}
299

石晓伟 已提交
300
void GpuStreamSync(cudaStream_t stream) {
301
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
石晓伟 已提交
302 303
}

304
static void RaiseNonOutOfMemoryError(cudaError_t *status) {
305 306 307 308 309 310 311 312 313 314 315
  if (*status == cudaErrorMemoryAllocation) {
    *status = cudaSuccess;
  }
  PADDLE_ENFORCE_CUDA_SUCCESS(*status);

  *status = cudaGetLastError();
  if (*status == cudaErrorMemoryAllocation) {
    *status = cudaSuccess;
  }
  PADDLE_ENFORCE_CUDA_SUCCESS(*status);
}
石晓伟 已提交
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
class RecordedCudaMallocHelper {
 private:
  explicit RecordedCudaMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
  }

  DISABLE_COPY_AND_ASSIGN(RecordedCudaMallocHelper);

 public:
  static RecordedCudaMallocHelper *Instance(int dev_id) {
    std::call_once(once_flag_, [] {
      int dev_cnt = GetCUDADeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedCudaMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
  cudaError_t Malloc(void **ptr, size_t size) {
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_ + size > limit_size_)) {
      return cudaErrorMemoryAllocation;
    }

    CUDADeviceGuard guard(dev_id_);
    auto result = cudaMalloc(ptr, size);
    if (result == cudaSuccess) {
      if (NeedRecord()) {
        cur_size_ += size;
      }
      return cudaSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return cudaErrorMemoryAllocation;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
    auto err = cudaFree(ptr);
    if (err != cudaErrorCudartUnloading) {
390
      PADDLE_ENFORCE_CUDA_SUCCESS(err);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
      if (NeedRecord()) {
        std::lock_guard<std::mutex> guard(*mtx_);
        cur_size_ -= size;
      }
    } else {
      cudaGetLastError();  // clear the error flag when cudaErrorCudartUnloading
    }
  }

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
      auto result = cudaMemGetInfo(actual_avail, actual_total);
      if (result != cudaSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_);
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const {
    LockGuardPtr<std::mutex> lock(mtx_);
    return NeedRecord() ? cur_size_ : 0;
  }

  uint64_t LimitSize() const { return limit_size_; }

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  uint64_t cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
  static std::vector<std::unique_ptr<RecordedCudaMallocHelper>> instances_;
};

std::once_flag RecordedCudaMallocHelper::once_flag_;
std::vector<std::unique_ptr<RecordedCudaMallocHelper>>
    RecordedCudaMallocHelper::instances_;

cudaError_t RecordedCudaMalloc(void **ptr, size_t size, int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->Malloc(ptr, size);
}

void RecordedCudaFree(void *p, size_t size, int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->Free(p, size);
}

bool RecordedCudaMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                            size_t *actual_total, int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedCudaMallocSize(int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->RecordedSize();
}

bool IsCudaMallocRecorded(int dev_id) {
  return RecordedCudaMallocHelper::Instance(dev_id)->NeedRecord();
}

L
liaogang 已提交
469 470
}  // namespace platform
}  // namespace paddle