test_jit_save_load.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18 19 20 21 22 23
import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
24 25
from paddle.fluid.dygraph import declarative, ProgramTranslator
from paddle.fluid.dygraph.io import VARIABLE_FILENAME, EXTRA_VAR_INFO_FILENAME
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

BATCH_SIZE = 32
BATCH_NUM = 20
SEED = 10


def random_batch_reader():
    def _get_random_images_and_labels(image_shape, label_shape):
        np.random.seed(SEED)
        image = np.random.random(size=image_shape).astype('float32')
        label = np.random.random(size=label_shape).astype('int64')
        return image, label

    def __reader__():
        for _ in range(BATCH_NUM):
            batch_image, batch_label = _get_random_images_and_labels(
                [BATCH_SIZE, 784], [BATCH_SIZE, 1])
            yield batch_image, batch_label

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


def train(layer):
    # create optimizer
82 83
    adam = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(random_batch_reader())
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
        adam.minimize(avg_loss)
        layer.clear_gradients()
    return [img], layer, avg_loss


def infer(layer):
    x = fluid.dygraph.to_variable(np.random.random((1, 784)).astype('float32'))
    return layer(x)


class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.test_jit_save_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        fluid.default_main_program().random_seed = SEED

116
    def train_and_save_model(self, model_path=None, configs=None):
117 118
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
119
        final_model_path = model_path if model_path else self.model_path
120
        orig_input_types = [type(x) for x in example_inputs]
121
        fluid.dygraph.jit.save(
122 123 124 125
            layer=layer,
            model_path=final_model_path,
            input_spec=example_inputs,
            configs=configs)
126 127
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
128 129
        return layer

130
    def test_save_load(self):
131 132 133
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
134 135 136 137 138 139 140 141 142
        program_translator = ProgramTranslator()
        program_translator.enable(False)
        loaded_layer = fluid.dygraph.jit.load(self.model_path)
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)
        program_translator.enable(True)

    def load_and_inference(self, train_layer, infer_layer):
143
        train_layer.eval()
144
        infer_layer.eval()
145 146 147 148 149 150
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

151 152
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
153 154 155 156 157 158 159
        load_train_layer.train()
        # train & compare
        _, _, train_loss = train(train_layer)
        _, _, load_train_loss = train(load_train_layer)
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

160 161 162 163 164 165 166 167 168 169 170 171 172
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
        # contruct new model
        new_layer = LinearNet(784, 1)
        model_dict, _ = fluid.dygraph.load_dygraph(self.model_path)
        new_layer.set_dict(model_dict)
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

173 174 175 176 177 178 179 180 181
    def test_save_get_program_failed(self):
        layer = LinearNetNotDeclarative(784, 1)
        example_inputs, layer, _ = train(layer)
        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.save(
                layer=layer,
                model_path=self.model_path,
                input_spec=example_inputs)

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def test_load_dygraoh_no_path(self):
        model_path = "model.test_jit_save_load.no_path"
        new_layer = LinearNet(784, 1)
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

    def test_load_dygraph_no_var_info(self):
        model_path = "model.test_jit_save_load.no_var_info"
        self.train_and_save_model(model_path=model_path)
        # remove `__variables.info__`
        var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        os.remove(var_info_path)
        new_layer = LinearNet(784, 1)
        with self.assertRaises(RuntimeError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

    def test_load_dygraph_not_var_file(self):
        model_path = "model.test_jit_save_load.no_var_file"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.train_and_save_model(model_path=model_path, configs=configs)
        new_layer = LinearNet(784, 1)
        with self.assertRaises(RuntimeError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        fluid.default_main_program().random_seed = SEED

    def basic_save_load(self, layer, model_path, configs):
        # 1. train & save
        example_inputs, train_layer, _ = train(layer)
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=example_inputs,
            configs=configs)
        # 2. load 
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        train_layer.eval()
        # 3. inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

    def test_model_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.model_filename = "__simplenet__"
        self.basic_save_load(layer, model_path, configs)

    def test_params_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.params_filename"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.basic_save_load(layer, model_path, configs)

    def test_separate_params(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.separate_params"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.separate_params = True
        self.basic_save_load(layer, model_path, configs)

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [out]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=[x],
            configs=configs)

        train_layer.eval()
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))


if __name__ == '__main__':
    unittest.main()