prelu_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/prelu_op.h"
13
#include <memory>
14
#include <string>
Z
zchen0211 已提交
15 16 17 18

namespace paddle {
namespace operators {

Z
fix  
zchen0211 已提交
19
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
20
 public:
Z
fix  
zchen0211 已提交
21
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
22 23 24 25
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput("Alpha"), "Input", "Alpha", "prelu");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "prelu");
J
jerrywgz 已提交
30 31

    auto x_dim = ctx->GetInputDim("X");
32
    std::string mode = ctx->Attrs().Get<std::string>("mode");
J
jerrywgz 已提交
33
    if (mode == "all") {
34 35 36 37 38
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), 1,
                        platform::errors::InvalidArgument(
                            "For mode 'all', size of weight Alpha must be one. "
                            "But recevied alpha's size: %d.",
                            product(ctx->GetInputDim("Alpha"))));
J
jerrywgz 已提交
39
    } else if (mode == "channel") {
40 41 42 43 44 45
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), x_dim[1],
                        platform::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[1]: %d",
                            product(ctx->GetInputDim("Alpha")), x_dim[1]));
J
jerrywgz 已提交
46
    } else if (mode == "element") {
47 48 49
      auto alpha_dim = ctx->GetInputDim("Alpha");
      auto alpha_rank = alpha_dim.size();
      auto x_rank = x_dim.size();
50 51 52 53 54 55 56
      PADDLE_ENFORCE_EQ(
          alpha_rank, x_rank,
          platform::errors::InvalidArgument(
              "For mode 'element', rank of weight Alpha must be ",
              "equal to the rank of input(x). But recevied alpha's rank: %d, "
              "x's rank: %d.",
              alpha_rank, x_rank));
57 58 59 60 61 62
      size_t x_product = 1;
      size_t alpha_product = 1;
      for (int64_t i = x_rank - 1; i > 0; i--) {
        x_product *= x_dim[i];
        alpha_product *= alpha_dim[i];
      }
63 64 65 66 67 68 69
      PADDLE_ENFORCE_EQ(
          alpha_product, x_product,
          platform::errors::InvalidArgument(
              "For mode 'element', the size of weight Alpha must be "
              "equal to the size of input(x). But recevied alpha's size: %d, "
              "x's size: %d.",
              alpha_product, x_product));
J
jerrywgz 已提交
70
    } else {
71 72 73 74 75
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
          "But recevied "
          "mode: '%s'.",
          mode));
J
jerrywgz 已提交
76
    }
77
    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
78
    ctx->ShareLoD("X", /*->*/ "Out");
Z
zchen0211 已提交
79
  }
J
jerrywgz 已提交
80 81 82 83

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
84 85 86
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
J
jerrywgz 已提交
87
  }
Z
zchen0211 已提交
88 89
};

Z
fix  
zchen0211 已提交
90
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
91
 public:
Y
Yu Yang 已提交
92
  void Make() override {
Z
zchen0211 已提交
93
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
94 95 96 97
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
98
The equation is:
K
kexinzhao 已提交
99 100 101 102 103 104 105
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
106
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
107
or not. And the output shares the LoD information with input `X`.
108
There are modes:
J
jerrywgz 已提交
109 110
  all: all elements share same weight
  channel: elements in a channel share same weight
111
  element: each element has a weight
Z
zchen0211 已提交
112
)DOC");
J
jerrywgz 已提交
113 114
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
Z
zchen0211 已提交
115 116 117 118
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
119
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
120 121 122
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

123
  void InferShape(framework::InferShapeContext *ctx) const override {
124 125 126 127
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "prelu");

J
jerrywgz 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
142 143 144
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Z
zchen0211 已提交
145 146 147
  }
};

148 149 150 151 152 153
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
154
  void Apply(GradOpPtr<T> op) const override {
155 156 157 158 159 160 161 162 163 164
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());
  }
};

Z
zchen0211 已提交
165 166 167 168 169
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

170 171 172
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>);
173
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
Q
QI JUN 已提交
174
REGISTER_OP_CPU_KERNEL(
175 176
    prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
177
REGISTER_OP_CPU_KERNEL(
178 179
    prelu_grad, ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluGradKernel<paddle::platform::CPUDeviceContext, double>);