spectral_norm_hook.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np

import paddle
from ..layer.conv import Conv1DTranspose, Conv2DTranspose, Conv3DTranspose
from ..layer.common import Linear
from .. import functional as F

__all__ = []


def normal_(x, mean=0., std=1.):
    temp_value = paddle.normal(mean, std, shape=x.shape)
    x.set_value(temp_value)
    return x


class SpectralNorm(object):
    def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12):
        self.name = name
        self.dim = dim
        if n_power_iterations <= 0:
            raise ValueError('Expected n_power_iterations to be positive, but '
                             'got n_power_iterations={}'.format(
                                 n_power_iterations))
        self.n_power_iterations = n_power_iterations
        self.eps = eps

    def reshape_weight_to_matrix(self, weight):
        weight_mat = weight
        if self.dim != 0:
            # transpose dim to front
            weight_mat = weight_mat.transpose([self.dim] + [
                d for d in range(weight_mat.dim()) if d != self.dim
            ])

        height = weight_mat.shape[0]

        return weight_mat.reshape([height, -1])

    def compute_weight(self, layer, do_power_iteration):
        weight = getattr(layer, self.name + '_orig')
        u = getattr(layer, self.name + '_u')
        v = getattr(layer, self.name + '_v')
        weight_mat = self.reshape_weight_to_matrix(weight)

        if do_power_iteration:
            with paddle.no_grad():
                for _ in range(self.n_power_iterations):
                    v.set_value(
                        F.normalize(
                            paddle.matmul(
                                weight_mat,
                                u,
                                transpose_x=True,
                                transpose_y=False),
                            axis=0,
                            epsilon=self.eps, ))

                    u.set_value(
                        F.normalize(
                            paddle.matmul(weight_mat, v),
                            axis=0,
                            epsilon=self.eps, ))
                if self.n_power_iterations > 0:
                    u = u.clone()
                    v = v.clone()

        sigma = paddle.dot(u, paddle.mv(weight_mat, v))
        weight = weight / sigma
        return weight

    def __call__(self, layer, inputs):
        setattr(
            layer,
            self.name,
            self.compute_weight(
                layer, do_power_iteration=layer.training))

    @staticmethod
    def apply(layer, name, n_power_iterations, dim, eps):
        for k, hook in layer._forward_pre_hooks.items():
            if isinstance(hook, SpectralNorm) and hook.name == name:
                raise RuntimeError("Cannot register two spectral_norm hooks on "
                                   "the same parameter {}".format(name))

        fn = SpectralNorm(name, n_power_iterations, dim, eps)
        weight = layer._parameters[name]

        with paddle.no_grad():
            weight_mat = fn.reshape_weight_to_matrix(weight)
            h, w = weight_mat.shape

            # randomly initialize u and v
            u = layer.create_parameter([h])
            u = normal_(u, 0., 1.)
            v = layer.create_parameter([w])
            v = normal_(v, 0., 1.)
            u = F.normalize(u, axis=0, epsilon=fn.eps)
            v = F.normalize(v, axis=0, epsilon=fn.eps)

        # delete fn.name form parameters, otherwise you can not set attribute
        del layer._parameters[fn.name]
        layer.add_parameter(fn.name + "_orig", weight)
        # still need to assign weight back as fn.name because all sorts of
        # things may assume that it exists, e.g., when initializing weights.
        # However, we can't directly assign as it could be an Parameter and
        # gets added as a parameter. Instead, we register weight * 1.0 as a plain
        # attribute.
        setattr(layer, fn.name, weight * 1.0)
        layer.register_buffer(fn.name + "_u", u)
        layer.register_buffer(fn.name + "_v", v)
        layer.register_forward_pre_hook(fn)
        return fn


def spectral_norm(layer,
                  name='weight',
                  n_power_iterations=1,
                  eps=1e-12,
                  dim=None):
    r"""
    This spectral_norm layer applies spectral normalization to a parameter according to the 
    following Calculation:

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` should be a positive integer, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W} \mathbf{v}}{\|\mathbf{W} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Parameters:
        layer(Layer): Layer of paddle, which has weight.
        name(str, optional): Name of the weight parameter. Default: 'weight'.
        n_power_iterations(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: None.
        
    Returns:
        The original layer with the spectral norm hook

    Examples:
       .. code-block:: python

            from paddle.nn import Conv2D
            from paddle.nn.utils import Spectralnorm

            conv = Conv2D(3, 1, 3)
            sn_conv = spectral_norm(conv)
            print(sn_conv)
            # Conv2D(3, 1, kernel_size=[3, 3], data_format=NCHW)
            print(sn_conv.weight)
            # Tensor(shape=[1, 3, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [[[[-0.21090528,  0.18563725, -0.14127982],
            #           [-0.02310637,  0.03197737,  0.34353802],
            #           [-0.17117859,  0.33152047, -0.28408015]],
            # 
            #          [[-0.13336606, -0.01862637,  0.06959272],
            #           [-0.02236020, -0.27091628, -0.24532901],
            #           [ 0.27254242,  0.15516677,  0.09036587]],
            # 
            #          [[ 0.30169338, -0.28146112, -0.11768346],
            #           [-0.45765871, -0.12504843, -0.17482486],
            #           [-0.36866254, -0.19969313,  0.08783543]]]])

    """

    if dim is None:
        if isinstance(layer, (Conv1DTranspose, Conv2DTranspose, Conv3DTranspose,
                              Linear)):
            dim = 1
        else:
            dim = 0
    SpectralNorm.apply(layer, name, n_power_iterations, dim, eps)
    return layer