lite_engine_op_test.cc 4.6 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <gtest/gtest.h>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/operators/lite/lite_engine_op.h"
#include "paddle/fluid/operators/lite/ut_helper.h"

USE_NO_KERNEL_OP(lite_engine)

using paddle::inference::lite::AddTensorToBlockDesc;
W
Wilber 已提交
28
using paddle::inference::lite::AddFetchListToBlockDesc;
石晓伟 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
using paddle::inference::lite::CreateTensor;
using paddle::inference::lite::serialize_params;
namespace paddle {
namespace operators {
TEST(LiteEngineOp, engine_op) {
  framework::ProgramDesc program;
  auto* block_ = program.Proto()->mutable_blocks(0);
  framework::BlockDesc block_desc(&program, block_);
  auto* feed0 = block_desc.AppendOp();
  feed0->SetType("feed");
  feed0->SetInput("X", {"feed"});
  feed0->SetOutput("Out", {"x"});
  feed0->SetAttr("col", 0);
  auto* feed1 = block_desc.AppendOp();
  feed1->SetType("feed");
  feed1->SetInput("X", {"feed"});
  feed1->SetOutput("Out", {"y"});
  feed1->SetAttr("col", 1);
  LOG(INFO) << "create elementwise_add op";
  auto* elt_add = block_desc.AppendOp();
  elt_add->SetType("elementwise_add");
  elt_add->SetInput("X", std::vector<std::string>({"x"}));
  elt_add->SetInput("Y", std::vector<std::string>({"y"}));
  elt_add->SetOutput("Out", std::vector<std::string>({"z"}));
  elt_add->SetAttr("axis", -1);
  LOG(INFO) << "create fetch op";
  auto* fetch = block_desc.AppendOp();
  fetch->SetType("fetch");
  fetch->SetInput("X", std::vector<std::string>({"z"}));
  fetch->SetOutput("Out", std::vector<std::string>({"out"}));
  fetch->SetAttr("col", 0);
  // Set inputs' variable shape in BlockDesc
  AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4}), true);
  AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({2, 4}), true);
  AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 4}), false);
W
Wilber 已提交
64
  AddFetchListToBlockDesc(block_, "out");
石晓伟 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  *block_->add_ops() = *feed1->Proto();
  *block_->add_ops() = *feed0->Proto();
  *block_->add_ops() = *elt_add->Proto();
  *block_->add_ops() = *fetch->Proto();
  framework::Scope scope;
#ifdef PADDLE_WITH_CUDA
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
#else
  platform::CPUPlace place;
  platform::CPUDeviceContext ctx(place);
#endif
  // Prepare variables.
  CreateTensor(&scope, "x", std::vector<int64_t>({2, 4}), false);
  CreateTensor(&scope, "y", std::vector<int64_t>({2, 4}), false);
  CreateTensor(&scope, "out", std::vector<int64_t>({2, 4}), false);

  ASSERT_EQ(block_->ops_size(), 4);

  std::vector<std::string> repetitive_params{"x", "y"};
  inference::lite::EngineConfig config;
  config.valid_places = {
#ifdef PADDLE_WITH_CUDA
W
Wilber 已提交
88
      paddle::lite_api::Place({TARGET(kCUDA), PRECISION(kFloat)}),
石晓伟 已提交
89
#endif
W
Wilber 已提交
90 91
      paddle::lite_api::Place({TARGET(kX86), PRECISION(kFloat)}),
      paddle::lite_api::Place({TARGET(kHost), PRECISION(kAny)}),
石晓伟 已提交
92 93 94 95 96 97 98 99 100 101 102 103
  };
  serialize_params(&(config.param), &scope, repetitive_params);
  config.model = program.Proto()->SerializeAsString();
  LOG(INFO) << "create lite_engine desc";
  framework::OpDesc engine_op_desc(nullptr);
  engine_op_desc.SetType("lite_engine");
  engine_op_desc.SetInput("Xs", std::vector<std::string>({"x", "y"}));
  engine_op_desc.SetOutput("Ys", std::vector<std::string>({"out"}));
  std::string engine_key = "engine_0";
  engine_op_desc.SetAttr("engine_key", engine_key);
  engine_op_desc.SetAttr("enable_int8", false);
  engine_op_desc.SetAttr("use_gpu", true);
104
  engine_op_desc.SetAttr("zero_copy", true);
石晓伟 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
  engine_op_desc.SetBlockAttr("sub_block", &block_desc);
  inference::Singleton<inference::lite::EngineManager>::Global().Create(
      engine_key, config);
  LOG(INFO) << "create engine op";
  auto engine_op = framework::OpRegistry::CreateOp(engine_op_desc);
  LOG(INFO) << "engine_op " << engine_op.get();
  // Execute them.
  LOG(INFO) << "engine_op run";
  engine_op->Run(scope, place);
  LOG(INFO) << "done";
}
}  // namespace operators
}  // namespace paddle