manipulation.py 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28 29 30
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

31 32 33 34
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
35
from ..fluid import layers
36
import paddle
37

W
Wilber 已提交
38
__all__ = [
39 40 41
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
42
    'broadcast_to',
43 44 45 46 47 48 49 50 51 52 53 54
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
55
    'chunk'
56 57 58 59 60 61 62 63 64 65 66
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
67
    'tile',
W
Wilber 已提交
68 69 70
]


71 72 73
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
74
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
75 76 77 78

    This OP concatenates the input along the axis.

    Args:
79 80
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
81 82 83 84
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
85 86 87 88
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Raises:
89 90
        TypeError: ``x`` must be list or tuple.
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. 
91
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
92 93 94
        TypeError: All the Tensors in ``x`` must have the same data type.

    Returns:
95
        Tensor: A Tensor with the same data type as ``x``.
96 97 98 99 100 101

    Examples:
        .. code-block:: python
            
            import paddle
            
102
            paddle.disable_static()  # Now we are in imperative mode
103 104 105 106 107 108
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
109 110 111
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
112 113 114
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
115 116 117 118 119 120 121 122 123
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
124
    check_type(x, 'x', (list, tuple), 'concat')
125 126 127
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
128
def flip(x, axis, name=None):
W
Wilber 已提交
129
    """
130 131
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
132

W
Wilber 已提交
133

Y
yaoxuefeng 已提交
134
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
135 136

    Args:
Y
yaoxuefeng 已提交
137
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
138
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
139
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
140 141 142 143
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
144
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
145 146 147 148 149 150

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
151

152
          paddle.disable_static()
Y
yaoxuefeng 已提交
153 154 155 156

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
157
          img = paddle.to_tensor(x)
Y
yaoxuefeng 已提交
158 159 160
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
161 162
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
163 164
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
165 166 167
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
168
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
169 170 171 172 173 174 175
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
176
        inputs={"X": x},
W
Wilber 已提交
177
        outputs={"Out": out},
Y
yaoxuefeng 已提交
178
        attrs={"axis": axis})
W
Wilber 已提交
179
    return out
180 181


Y
yaoxuefeng 已提交
182 183 184
reverse = flip  #DEFINE_ALIAS


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32,
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
        Variable: A tensor with the contents of the input tensor, with input \
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
        ValueError: If x is not a Variable.
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

243
            paddle.disable_static()
244 245 246 247 248

            image_shape=(2, 3, 4, 4)
            x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
            x = x.astype('float32')
            
249
            img = paddle.to_tensor(x)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
293
def roll(x, shifts, axis=None, name=None):
294
    """
295 296
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
297

Y
yaoxuefeng 已提交
298 299 300
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
301 302 303
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
304
        x (Variable): The x tensor variable as input.
305
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
306 307
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
308 309

    Returns:
Y
yaoxuefeng 已提交
310
        Variable: A Tensor with same data type as `x`.
311 312 313 314 315 316

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid

317
            paddle.disable_static()
318 319 320
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
321 322 323 324 325 326 327 328 329 330
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
331 332
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
333
    origin_shape = x.shape
334 335
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
349 350 351
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
352 353 354 355
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
356 357
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
358
    out = helper.create_variable_for_type_inference(x.dtype)
359

Y
yaoxuefeng 已提交
360 361 362
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
363 364 365

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
366
        inputs={'X': x},
367
        outputs={'Out': out},
Y
yaoxuefeng 已提交
368
        attrs={'axis': axis,
369
               'shifts': shifts})
370
    out = layers.reshape(out, shape=origin_shape, inplace=True)
371
    return out
372 373


L
Leo Chen 已提交
374
def stack(x, axis=0, name=None):
375
    """
376
	:alias_main: paddle.stack
L
Leo Chen 已提交
377
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
378

L
Leo Chen 已提交
379 380 381 382 383 384 385
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
421
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
422 423 424 425 426 427 428 429

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
430
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
431
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
432 433 434 435 436
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
437
    Returns:
L
Leo Chen 已提交
438
        Tensor: The stacked tensor with same data type as input.
439 440 441

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
442

443 444
            import paddle

445
            paddle.disable_static()
L
Leo Chen 已提交
446 447 448
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
449 450 451 452 453 454 455 456
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
457 458


459
def split(x, num_or_sections, axis=0, name=None):
460 461
    """
    Split the input tensor into multiple sub-Tensors.
462
    
463
    Args:
464 465 466 467 468 469 470 471 472 473 474
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
475
    Returns:
476
        list(Tensor): The list of segmented Tensors.
477
    Raises:
478 479 480
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``num_or_sections`` is not int, list or tuple.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
481 482
    Example:
        .. code-block:: python
483
            
484 485 486
            import numpy as np
            import paddle
            
487
            paddle.disable_static()
488 489
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
W
wangchaochaohu 已提交
490
            x = paddle.to_tensor(x_np)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
513
    """
514 515
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
516 517


L
Leo Chen 已提交
518
def squeeze(x, axis=None, name=None):
519
    """
520
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
521
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
522

L
Leo Chen 已提交
523
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
524

L
Leo Chen 已提交
525 526 527
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
528 529 530 531 532 533

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
534 535
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
536
          Output:
L
Leo Chen 已提交
537
            out.shape = [3, 5]
538 539 540 541

        Case2:

          Input:
L
Leo Chen 已提交
542 543 544 545 546 547 548 549 550 551
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
552
          Output:
L
Leo Chen 已提交
553
            out.shape = [3, 5]
554

L
Leo Chen 已提交
555
        Case4:
556 557

          Input:
L
Leo Chen 已提交
558 559
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
560
          Output:
L
Leo Chen 已提交
561
            out.shape = [1, 3, 5]
562 563

    Args:
564
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
565
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
566 567 568
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
569 570 571
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
572
        Tensor: Squeezed Tensor with the same data type as input Tensor.
573 574 575

    Examples:
        .. code-block:: python
576

577 578
            import paddle

579
            paddle.disable_static()
L
Leo Chen 已提交
580 581 582 583
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
584 585

    """
L
Leo Chen 已提交
586 587 588 589 590 591
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
592

L
Leo Chen 已提交
593
    return layers.squeeze(x, axis, name)
594 595


Z
Zhang Ting 已提交
596 597 598 599 600
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
601
           dtype="int64",
Z
Zhang Ting 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614
           name=None):
    """
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
615 616
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
631
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
632 633 634 635 636 637 638
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

639
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
640 641 642 643 644 645 646 647 648 649 650 651
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
652
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
653 654
    if in_dygraph_mode():
        out, inverse, indices, counts = core.ops.unique(
Z
Zhang Ting 已提交
655
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
676
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
677 678 679 680 681
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
682
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
683 684 685 686 687 688 689 690 691
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
692
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
693 694 695 696
    outputs = {"Out": out, "Index": inverse}
    outs = [out]
    if return_index:
        indices = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
697
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
698 699 700 701 702 703
        outputs["Indices"] = indices
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        counts = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
704
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
705 706 707 708 709 710 711 712 713 714 715 716
        outputs["Counts"] = counts
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


717
def unsqueeze(x, axis, name=None):
718
    """
719
	:alias_main: paddle.unsqueeze
720
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
721

722 723 724
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
725 726

    Args:
727 728 729 730 731 732
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
733 734

    Returns:
735
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
736 737 738

    Examples:
        .. code-block:: python
739

740 741
            import paddle

742
            paddle.disable_static()
743 744 745 746 747 748 749 750
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
751

752 753 754 755
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
756
    """
757 758
    if isinstance(axis, int):
        axis = [axis]
759

760
    return layers.unsqueeze(x, axis, name)
761 762


763
def gather(x, index, axis=None, name=None):
764
    """
S
swtkiwi 已提交
765

766 767
    **Gather Layer**

768 769
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
770 771 772 773 774 775

    .. code-block:: text


                Given:

776
                x = [[1, 2],
777 778 779
                     [3, 4],
                     [5, 6]]

780 781
                index = [1, 2]
                axis=[0]
782 783 784

                Then:

785
                out = [[3, 4],
786 787
                       [5, 6]]
    Args:
788
        x (Tensor): The source input tensor with rank>=1. Supported data type is
789 790
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
791
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
792
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
793 794
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
795 796

    Returns:
797 798 799 800 801 802
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must to be one of float16, float32, float64, int32, int64, uint8.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
        TypeError: ``axis`` must be a Tensor or int and the data type of ``index`` must be int32 or int64 when it's a Tensor.
803 804 805 806 807 808 809

    Examples:

        .. code-block:: python

            import paddle

810
            paddle.disable_static()
811 812
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
813 814
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
815
    """
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    if axis is None:
        axis = 0
    axis_tensor = axis
    if not isinstance(axis, Variable):
        axis_tensor = fill_constant(shape=[1], dtype='int64', value=axis)
    if in_dygraph_mode():
        return core.ops.gather(x, index, axis_tensor)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
    else:
        check_type(axis, 'axis', (int), 'gather')

833 834 835 836 837
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
838 839 840 841
        inputs={"X": x,
                "Index": index,
                "Axis": axis_tensor},
        outputs={"Out": out})
842
    return out
myq406450149's avatar
myq406450149 已提交
843 844 845 846


def unbind(input, axis=0):
    """
847 848
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
849

myq406450149's avatar
myq406450149 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
900 901


S
ShenLiang 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle
            paddle.disable_static()

950 951 952
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
        return core.ops.scatter(x, index, updates, 'overwrite', overwrite)

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
    Raises:
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``chunks`` is not int.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            paddle.disable_static()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1018
            x = paddle.to_tensor(x_np)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

            out0, out1, out22 = paddle.chunk(x, chunks=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1038 1039
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1040 1041

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1042
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1043 1044 1045

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1046
    Args:
L
lilong12 已提交
1047 1048 1049 1050 1051
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1052
    Returns:
L
lilong12 已提交
1053 1054
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1055 1056
    Examples:
        .. code-block:: python
L
lilong12 已提交
1057

L
lilong12 已提交
1058
            import paddle
L
lilong12 已提交
1059

L
lilong12 已提交
1060
            paddle.disable_static()
1061
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1062
            out = paddle.tile(data, repeat_times=[2, 1])
1063
            np_out = out.numpy()
L
lilong12 已提交
1064
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1065 1066

            out = paddle.tile(data, repeat_times=[2, 2])
1067
            np_out = out.numpy()
L
lilong12 已提交
1068 1069
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1070
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1071
            out = paddle.tile(data, repeat_times=repeat_times)
1072
            np_out = out.numpy()
L
lilong12 已提交
1073 1074
            # [[1, 2, 3], [1, 2, 3]]
    """
1075 1076 1077
    if in_dygraph_mode():
        return core.ops.tile(x, 'repeat_times', repeat_times)

L
lilong12 已提交
1078 1079 1080
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
L
lilong12 已提交
1081
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1082 1083
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1084
            "must set its stop_gradient to be True by "
1085 1086 1087
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1088

L
lilong12 已提交
1089 1090 1091
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1092 1093 1094 1095 1096 1097 1098 1099
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1100
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1101 1102 1103 1104 1105
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1106
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1118 1119


L
lilong12 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1129
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

1142 1143
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1144
            out = paddle.expand_as(data_x, data_y)
1145
            np_out = out.numpy()
L
lilong12 已提交
1146 1147
            # [[1, 2, 3], [1, 2, 3]]
    """
1148 1149 1150
    if in_dygraph_mode():
        return core.ops.expand_as_v2(x, y)

L
lilong12 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

1163
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1164 1165 1166 1167 1168 1169
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


1170 1171 1172 1173 1174
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1175
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1176 1177 1178


    Args:
L
lilong12 已提交
1179 1180 1181 1182
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1183 1184 1185
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1186
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1187 1188 1189 1190 1191 1192

    Examples:
        .. code-block:: python

            import paddle

L
lilong12 已提交
1193
            paddle.disable_static()
1194
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1195
            out = paddle.expand(data, shape=[2, 3])
1196
            out = out.numpy()
1197 1198
            # [[1, 2, 3], [1, 2, 3]]
    """
1199 1200 1201
    if in_dygraph_mode():
        return core.ops.expand_v2(x, 'shape', shape)

1202 1203 1204
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1205 1206 1207 1208

    inputs = {"X": [x]}
    attrs = {}
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1209 1210
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1211
                         "some_var.stop_gradient = True, supporting "
1212 1213
                         "some_var as the input.")

1214
    helper = LayerHelper('expand', **locals())
1215 1216 1217 1218 1219 1220 1221 1222 1223

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1224
                    "All elements in shape of expand must be positive or -1.")
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1241 1242 1243


broadcast_to = expand
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321


def reshape(x, shape, name=None):
    """
    :alias_main: paddle.reshape
	:alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape

    This operator changes the shape of ``x`` without changing its data.

    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Raises:
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()

            data = np.random.random([2, 4, 6]).astype("float32")
            x = paddle.to_tensor(data)

            positive_four = paddle.fill_constant([1], "int32", 4)

            out_1 = paddle.reshape(x, [-1, 0, 3, 2])
            # the shape of out_1 is [2,4,3,2].

            out_2 = paddle.reshape(x, shape=[positive_four, 12])
            # the shape of out_2 is [4, 12].

            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
            out_3 = paddle.reshape(x, shape=shape_tensor)
            # the shape of out_2 is [8, 6].
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342


def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1343 1344 1345 1346 1347 1348 1349
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1350 1351 1352 1353

            * Case 1:
                index = [[1]]

1354 1355
                gather_nd(x, index)
                         = [x[1, :, :]]
1356 1357 1358 1359 1360 1361 1362
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1363 1364
                gather_nd(x, index)
                         = [x[0, 2, :]]
1365 1366 1367 1368 1369
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1370 1371
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be one of int32 and int64.

    Examples:

        .. code-block:: python
1391
            
1392 1393 1394
            import paddle
            
            paddle.disable_static()
1395 1396 1397
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
1398 1399 1400 1401 1402 1403
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)