elementwise_grad_kernel.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
16

17 18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
20
#include "paddle/phi/kernels/cpu/elementwise_grad.h"
21 22
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h"
23

24
namespace phi {
25 26 27 28 29 30 31 32 33 34 35

template <typename T>
void AddGradFunc(const CPUContext& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const DenseTensor& out,
                 const DenseTensor& dout,
                 DenseTensor* dx,
                 DenseTensor* dy,
                 int axis = -1) {
  if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
36
    ElementwiseAddGrad<T>(dev_ctx, x, y, out, dout, dx, dy);
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  } else {
    ElemwiseExplicitGradCompute<T, IdentityGrad<T>, IdentityGrad<T>>(
        dev_ctx,
        x,
        y,
        out,
        dout,
        axis,
        dx,
        dy,
        IdentityGrad<T>(),
        IdentityGrad<T>());
  }
}

template <typename T, typename Context>
void AddGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const DenseTensor& dout,
                   int axis,
                   DenseTensor* dx,
                   DenseTensor* dy) {
60
  phi::AddGradImpl<T>(dev_ctx, x, y, dout, axis, dx, dy, AddGradFunc<T>);
61 62 63 64 65 66 67 68 69 70
}

template <typename T, typename Context>
void AddDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& y,
                         paddle::optional<const DenseTensor&> ddx,
                         paddle::optional<const DenseTensor&> ddy,
                         const DenseTensor& dout,
                         int axis,
                         DenseTensor* ddout) {
71
  phi::AddDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
72 73 74 75 76 77 78 79 80 81
}

template <typename T, typename Context>
void AddTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& d_ddout,
                         int axis,
                         DenseTensor* d_ddx,
                         DenseTensor* d_ddy) {
82
  phi::AddGradImpl<T>(
83 84 85
      dev_ctx, ddx, ddy, d_ddout, axis, d_ddx, d_ddy, AddGradFunc<T>);
}

86 87 88 89 90 91 92 93 94 95
template <typename T, typename Context>
void SubtractGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  // skip out
  auto* out = &dout;
96
  ElementwiseSubGrad<T>(dev_ctx, x, y, *out, dout, dx, dy, axis);
97 98 99 100 101 102 103 104 105 106
}

template <typename T, typename Context>
void SubtractDoubleGradKernel(const Context& dev_ctx,
                              const DenseTensor& y,
                              paddle::optional<const DenseTensor&> ddx,
                              paddle::optional<const DenseTensor&> ddy,
                              const DenseTensor& dout,
                              int axis,
                              DenseTensor* ddout) {
107
  phi::SubtractDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename T, typename Context>
void DivideGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      const DenseTensor& out,
                      const DenseTensor& dout,
                      int axis,
                      DenseTensor* dx,
                      DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, DivGradDX<T>, DivGradDY<T>>(
      dev_ctx, x, y, out, dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

Y
YuanRisheng 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137
template <typename T, typename Context>
void MultiplyGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  auto* out = &dout;  // out is not necessary
  phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
      dev_ctx, x, y, *out, dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

138
}  // namespace phi
139

140
PD_REGISTER_KERNEL(add_grad,
141 142
                   CPU,
                   ALL_LAYOUT,
143
                   phi::AddGradKernel,
144 145
                   float,
                   double,
146
                   int16_t,
147 148
                   int,
                   int64_t,
149 150
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
151

152
PD_REGISTER_KERNEL(add_double_grad,
153 154
                   CPU,
                   ALL_LAYOUT,
155
                   phi::AddDoubleGradKernel,
156 157
                   float,
                   double,
158
                   int16_t,
159 160
                   int,
                   int64_t,
161 162
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
163

164
PD_REGISTER_KERNEL(add_triple_grad,
165 166
                   CPU,
                   ALL_LAYOUT,
167
                   phi::AddTripleGradKernel,
168 169
                   float,
                   double,
170
                   int16_t,
171 172
                   int,
                   int64_t,
173 174
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
175

176
PD_REGISTER_KERNEL(subtract_grad,
177 178
                   CPU,
                   ALL_LAYOUT,
179
                   phi::SubtractGradKernel,
180 181
                   float,
                   double,
182
                   int16_t,
183 184
                   int,
                   int64_t,
185
                   phi::dtype::bfloat16,
186 187
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
188

189
PD_REGISTER_KERNEL(subtract_double_grad,
190 191
                   CPU,
                   ALL_LAYOUT,
192
                   phi::SubtractDoubleGradKernel,
193 194
                   float,
                   double,
195
                   int16_t,
196 197
                   int,
                   int64_t,
198
                   phi::dtype::bfloat16,
199 200
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
201 202 203 204 205 206 207 208 209

PD_REGISTER_KERNEL(divide_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
Y
YuanRisheng 已提交
210 211
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
212 213 214 215 216 217 218 219 220

PD_REGISTER_KERNEL(divide_double_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideDoubleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
Y
YuanRisheng 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_double_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyDoubleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_triple_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyTripleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
PD_REGISTER_KERNEL(elementwise_fmax_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMaxGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(elementwise_fmin_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMinGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}