interface.py 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy
16
import copy
17
import paddle
18
import paddle.fluid.core as core
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
from paddle.fluid.framework import Variable
from paddle.fluid.framework import in_dygraph_mode

__all__ = []

# a map from ProcessMesh ids to the ProcessMesh instances
_g_process_mesh_map = dict()

# user defined map from logical process ids to physical ones
_user_defined_physical_map = None


def _append_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def _remove_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def _static_mode_check():
    if in_dygraph_mode():
        raise RuntimeError("Auto-parallel only supports static mode, "
                           "please use paddle.enable_static().")


def _get_nested_list_shape(nested_list):
    """
    Get the shape of a nested_list.
    """
    result = []
    while isinstance(nested_list, list):
        result.append(len(nested_list))
        nested_list = nested_list[0]
    return result


def _flatten_nested_list(nested_list):
    """
    Get a list of all items in a nested_list.
    Ref: https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists
    """
    result = numpy.array(nested_list).flatten().tolist()
    return result


class ProcessMesh(object):
    r"""
    The class `Processmesh` describes the topology of logical processes. 
    A mesh is an N-dimensional array. The shape of the N-dimensional
    array represents the topology of logical processes and every
    element of the N-dimensional array represent a logical process. For
    example, the 2-dimensional array [[2, 4, 5], [0, 1, 3]]
    illustrates six logical processes organized as the topology [2, 3],
    i.e., the shape of the 2-dimensional array. With the above topology,
    there are two parallel groups, where the first parallel group has a
    parallel degree of 2 and the second one has a parallel degree of 3.
    And the first logical process is the one with id=2.

    Args:
        mesh (list): an N-dimensional array (nested list) describes the toplogy
            of logical processes. The shape of the N-dimensional array
            represents the topology of logical processes and every 
            element of the N-dimensional array represents a logical process.
        parent (ProcessMesh, optional): the parent ProcessMesh. None means
            the ProcessMesh is the root one without parent ProcessMesh.
            Default: None.
    
    Returns:
        None

    Raises:
        ValueError: If `mesh` is not an instance of list.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist
            
            paddle.enable_static()
            
            mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]])
            assert mesh.parent is None
            assert mesh.topology == [2, 3]
            assert mesh.process_group == [2, 4, 5, 0, 1, 3]
            mesh.set_placement([0, 1, 2, 3, 4, 5])

    """

    def __init__(self, mesh, parent=None):
        _static_mode_check()
        if mesh is None or not isinstance(mesh, list):
            raise ValueError('mesh must be an instance of list.')

        self._topology = _get_nested_list_shape(mesh)
        self._processes = _flatten_nested_list(mesh)

        # Every element of mesh must be >= 0.
        assert min(self._processes) >= 0, ('All elements of mesh must be >= 0.')

        unique_ids = set(self._processes)
        assert len(unique_ids) == len(self._processes), (
            'All elements of mesh must be unique.')

        if parent is None:
            # For root ProcessMesh, the ids of logical processes must be range
            # from 0 to N-1, where N is the number of logical processes. 
            assert max(self._processes) == len(self._processes) - 1, (
                'For root ProcessMesh, ids of logical processes must be range '
                'from 0 to N-1, where N is the number of logical processes.')

            parent_id = core.kNoneProcessMeshIndex()
            assert len(_g_process_mesh_map.keys()) == 0, (
                'The first ProcessMesh must be the root, which has no parent.')
        else:
            assert len(_g_process_mesh_map.keys()) > 0, (
                'All ProcessMesh must have a parent except the root one.')

            assert isinstance(parent, ProcessMesh), (
                'parent must be an instance of ProcessMesh.')
            parent_id = parent._desc.id

            # All elements in mesh must belong to its parent
            parent_ids = set(parent.process_group)
            assert unique_ids <= parent_ids, (
                'All elements in mesh must belong to its parent.')

        self._desc = core.ProcessMeshDesc(self._topology, self._processes,
                                          parent_id)

        self._id = self._desc.id
        self._parent_id = parent_id
        assert self._id not in _g_process_mesh_map, (
            "The ProcessMesh with id %d already exists." % self._id)
        _g_process_mesh_map[self._id] = self

    @property
    def topology(self):
        r"""
        Get the topology of logical processes belonging to this ProcessMesh.
        This is the shape of `mesh` used to initialized this ProcessMesh.
        """
        return self._topology

    @property
    def process_group(self):
        r"""
        Get a list of all processes belonging to this ProcessMesh.
        """
        return self._processes

    @property
    def parent(self):
        r"""
        Get the parent ProcessMesh.
        """
        if self._parent_id == core.kNoneProcessMeshIndex(): return None
        assert self._parent_id in _g_process_mesh_map, (
            "parent with id %d does not exist." % self._parent_id)
        return _g_process_mesh_map[self._parent_id]

187 188 189 190 191 192 193
    @property
    def ndim(self):
        r"""
        Get the number of dimension of ProcessMesh.
        """
        return len(self._topology)

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def set_placement(self, order):
        """
        Set the map from logical processes to physical ones using the
        user defined order.

        Args:
            order (list): order of the physical process ids.
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.distributed as dist
                
                paddle.enable_static()
                
                mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]])
                mesh.set_placement([0, 1, 2, 3, 4, 5])

        """
        assert self.parent is None, (
            "This function can only be called by the root ProcessMesh.")
        unique_ids = set(order)
        assert isinstance(order, list)

        assert len(unique_ids) == len(order), (
            "All elements in order must be unique.")
        assert min(order) == 0
        assert max(order) == len(order) - 1, (
            "All elements in order must be from 0 to N - 1, where N "
            "is the number of physical processes.")

        logical_order = self.process_group
        global _user_defined_physical_map
        assert _user_defined_physical_map is None, (
            "This function can only be called once.")
        _user_defined_physical_map = dict()

        assert len(logical_order) == len(order)
        for idx, l_id in enumerate(logical_order):
            _user_defined_physical_map[l_id] = order[idx]

239 240 241 242 243 244 245
    def _reset_global_process_mesh_map(self):
        """
        Remove all process mesh in _g_process_mesh_map, make it empty.
        """

        _g_process_mesh_map = dict()

246 247 248 249 250 251 252 253 254
    def __eq__(self, other):
        assert other and isinstance(other, ProcessMesh)
        if self.topology != other.topology or self.process_group != other.process_group:
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    def __str__(self):
        str = "shape {} and process group {}".format(self.topology,
                                                     self.process_group)
        return str

    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            # No need to copy the owner tensor and context
            if k == "_desc":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

272 273

def _dim_mapping_checker(tensor, mesh, dim_mapping):
274 275 276 277 278 279 280 281
    assert isinstance(mesh,
                      ProcessMesh), 'The type of mesh must be ProcessMesh.'
    assert isinstance(dim_mapping,
                      list), 'The type of dim_mapping must be list.'
    assert len(tensor.shape) == len(dim_mapping), (
        'The number of dimensions '
        'of tensor must be the same as the length of its corresponding '
        'dim_mapping.')
282 283 284
    mesh_dim = len(mesh.topology)
    dim_set = set()
    for i in range(len(dim_mapping)):
285 286 287 288 289
        assert dim_mapping[i] == -1 or (
            dim_mapping[i] < mesh_dim and dim_mapping[i] >= 0), (
                'Each element '
                'in dim_mapping must be greater than zero and less than the '
                'length of its corresponding topology, or it must be -1.')
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        if dim_mapping[i] >= 0:
            assert dim_mapping[i] not in dim_set
            dim_set.add(dim_mapping[i])


def shard_tensor(x, mesh, dim_mapping):
    """
    Add distributed attributes for a tensors.

    Args:
        x (Tensor): the tensor to process.
        mesh (ProcessMesh): an instance of ProcessMesh to describe the topology of logical processes.
        dim_mapping (list): a list to describe the mapping between `x` and `mesh`,
            the dimension `i` of `x` is split across the dimension `dims_mapping[i]`, where -1 means
            without parition along the corresponding dimension.

    Returns:
        Tensor: the tensor `x` itself.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist
            
            paddle.enable_static()

            mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]])
            x = paddle.ones([4, 6])
            dist.shard_tensor(x, mesh, [0, -1])

    """
    _static_mode_check()
    _dim_mapping_checker(x, mesh, dim_mapping)
    attr_name = _append_attr_suffix('mesh_id')
    x._set_attr(attr_name, mesh._id)
    attr_name = _append_attr_suffix('dim_mapping')
    x._set_attr(attr_name, dim_mapping)
    return x


def set_shard_mask(x, mask):
    """
    Set the mask for a tensor which mask out the tensor from some processes in its mesh.

    Args:
        x (Tensor): the tensor to process.
        mask (list): a nested list. The shape of `mask` must be the same as the ProcessMesh belonging to
            the tensor `x`. Every value of `mask` must be one or zero, where one means 
            the tenor `x` will be put on the corresponding logical process and zero means the tensor `x`
            will not be put on the corresponding logical process.
            For example, for a ProcessMesh represented by the 2-dimensional
            array [[2, 4, 5], [0, 1, 3]], and a `mask` given by the
            2-dimensional [[1, 0, 1], [0, 1, 0]],
            then the tensor `x` will only be put on logical processes 2, 5 and 1.

    Returns:
        Tensor: the tensor `x` itself.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            paddle.enable_static()
            
            mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]])
            mask = [[1, 0, 1], [0, 1, 0]]
            x = paddle.ones([4, 6])
360
            dist.shard_tensor(x, mesh, [-1, 1])
361 362 363 364 365
            dist.set_shard_mask(x, mask)

    """
    _static_mode_check()
    assert isinstance(mask, list)
L
lilong12 已提交
366 367 368
    np_mask = numpy.array(mask)
    min_ele = numpy.min(np_mask)
    max_ele = numpy.max(np_mask)
369 370 371
    mesh_attr_name = _append_attr_suffix('mesh_id')
    assert x._has_attr(mesh_attr_name), \
        "Please set process mesh for the variable firstly."
L
lilong12 已提交
372 373 374 375 376 377
    assert min_ele >= 0 and max_ele <= 1, "Elements in mask must be 0 or 1."
    x_mesh = x.process_mesh
    assert x_mesh, "Please set process mesh for the variable firstly."
    assert x_mesh.topology == list(np_mask.shape), (
        "The shape of mask "
        "must be the same as the shape of its Process Mesh.")
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    attr_name = _append_attr_suffix('mask')
    x._set_attr(attr_name, _flatten_nested_list(mask))
    return x


def shard_op(op_fn, mesh, dim_mapping_dict, **kwargs):
    """
    Call a functioin and add distributed attributes for ops added by the function.

    Args:
        op_fn (callable): a callable object of an API.
        mesh (ProcessMesh): an instance of ProcessMesh specifies the topology of logical processes.
        dim_mapping_dict (dict): a mapping from tensor's name to its dims_mapping.
            The dim_mapping is a list to describe the mapping between a tensor and `mesh`,
            the dimension `i` of the tensor is split across the dimension `dim_mapping[i]`,
            where -1 means without parition along the corresponding dimension.
        kwargs (dict): a dict of parameter passed to the function `op_fn`.

    Returns:
        list: the outputs of the function `op_fn`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            paddle.enable_static()
            
            mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]])
            x = paddle.ones([4, 6])
            y = paddle.zeros([4, 6])
            kwargs = {'x': x, 'y': y}
            dist.shard_op(paddle.add, mesh, None, **kwargs)

    """
    _static_mode_check()
    main_prog = paddle.fluid.default_main_program()
    main_block = main_prog.global_block()
    op_size = len(main_block.ops)
    output = op_fn(**kwargs)
    new_op_size = len(main_block.ops)
420 421 422 423 424 425 426 427 428
    if dim_mapping_dict is None:
        dim_mapping_dict = dict()
    else:
        assert isinstance(dim_mapping_dict,
                          dict), 'The type of dim_mapping_dict must be dict.'
        for var_name in dim_mapping_dict.keys():
            dim_mapping = dim_mapping_dict[var_name]
            tensor = main_block.var(var_name)
            _dim_mapping_checker(tensor, mesh, dim_mapping)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    for idx in range(op_size, new_op_size):
        op = main_block.ops[idx]
        attr_name = _append_attr_suffix('mesh_id')
        op._set_attr(attr_name, mesh._id)
        for var_name in dim_mapping_dict.keys():
            assert var_name in op.output_arg_names + op.input_arg_names
            attr_name = _append_attr_suffix(var_name)
            if var_name in op.input_arg_names:
                # we use the prefix "IN_" to indicates an input argument name
                attr_name = "IN_" + attr_name
            else:
                # we use the prefix "OUT_" to indicates an input argument name
                attr_name = "OUT_" + attr_name
            op._set_attr(attr_name, dim_mapping_dict[var_name])

    if isinstance(output, Variable):
        output = [output]
    return list(output)


def set_offload_device(x, device):
    """
    Set the device that the tensor `x` will be put on.

    Args:
        x (tensor): the tensor to process.
        device (str): the device that the tensor `x` will be put on, e.g., 'cpu'.

    Returns:
        Tensor: the tensor `x` itself.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            paddle.enable_static()
            
            x = paddle.ones([4, 6])
            dist.set_offload_device(x, 'cpu')

    """
    _static_mode_check()
L
lilong12 已提交
473
    assert device == "cpu", "Only 'cpu' is supported for destination device."
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    attr_name = _append_attr_suffix("offload_device")
    x._set_attr(attr_name, device)
    return x


def set_pipeline_stage(stage):
    """
    Set the pipeline stage of the following ops.

    Args:
        stage (int): the pipeline stage the following ops belonging to.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            paddle.enable_static()
            
            dist.set_pipeline_stage(0)

    """
    from paddle.fluid.framework import _set_pipeline_stage
    _static_mode_check()
502
    assert isinstance(stage, int), 'The type of stage must be int.'
503
    _set_pipeline_stage(stage)