strided_slice_op.h 14.6 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26 27 28 29
static void StridedSliceOutDims(
    const std::vector<int>& starts, const std::vector<int>& ends,
    const std::vector<int>& strides, const std::vector<int>& axes,
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30 31
    const std::vector<int>& decrease_axis, int* out_dims_vector,
    const size_t size, bool infer_shape) {
32 33 34 35 36 37
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
  int stride_index, start_index, end_index;
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57
    PADDLE_ENFORCE_NE(stride_index, 0, "stride must not to be zero");
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    int axis_size = in_dims[axes_index];
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
      end_index = end_index + axis_size;
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool zero_dim_condition =
        ((stride_index < 0 && (start_index <= end_index)) ||
         (stride_index > 0 && (start_index >= end_index)));
    PADDLE_ENFORCE_EQ(zero_dim_condition, false,
                      "starts and end must meet requirement in different "
                      "stride conditiont");
    int left = std::max(0, std::min(start_index, end_index));
    int right = std::min(axis_size, std::max(start_index, end_index));
    int step = std::abs(stride_index);
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

W
wangchaochaohu 已提交
90 91
static void StridedSliceFunctor(int* starts, int* ends, int* strides, int* axes,
                                int* reverse_axis, const framework::DDim dims,
92 93
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
94 95 96 97 98 99 100 101 102
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
    int axis_size = dims[axes[axis]];
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
103 104 105 106 107 108 109 110 111
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
112 113 114 115 116 117 118 119
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }

    if (ends[axis_index] < 0) {
      ends[axis_index] = ends[axis_index] + axis_size;
    }
120 121 122 123 124 125 126
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
W
wangchaochaohu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
        starts[axis_index] = starts[axis_index] + 1;
        ends[axis_index] = ends[axis_index] + 1;
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto in_dims = in->dims();

    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");
183
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
184
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
185 186 187 188 189 190

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = get_new_data_from_tensorlist(list_new_strides_tensor);
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
      strides = get_new_data_from_tensor(strides_tensor);
    }

    std::vector<int> out_dims_vector(in_dims.size(), -1);
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
221 222
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
223 224
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
225 226
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
227 228
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
229 230 231 232 233

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
234
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
235 236 237 238 239 240 241 242 243 244 245
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

    framework::Tensor tmp;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                          "decrease dim should be 1");
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

    tmp.mutable_data<T>(out_dims, context.GetPlace());
267
    out->Resize(out_dims);
W
wangchaochaohu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
    out->mutable_data<T>(context.GetPlace());
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto tmp_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            tmp);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out, out_dims);
    tmp_t.device(place) =
        in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    out_t.device(place) = tmp_t.reverse(reverse_axis);
281 282 283 284

    if (decrease_axis.size() > 0) {
      out->Resize(out_dims_origin);
    }
W
wangchaochaohu 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_input =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_out =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_out->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, d_out, static_cast<T>(0));
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
    auto strides = context.Attr<std::vector<int>>("strides");
    auto axes = context.Attr<std::vector<int>>("axes");
336 337
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }

    if (list_new_strides_tensor.size() > 0) {
      strides = get_new_data_from_tensorlist(list_new_strides_tensor);
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
      strides = get_new_data_from_tensor(strides_tensor);
    }

W
wangchaochaohu 已提交
367 368 369 370 371 372 373 374
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
375 376
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

    framework::Tensor reverse_input;
    reverse_input.mutable_data<T>(in_dims, context.GetPlace());

    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto reverse_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            reverse_input);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out, out_dims);

    reverse_in_t.device(place) = in_t.reverse(reverse_axis);
    out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(place) = reverse_in_t;
  }
};
}  // namespace operators
}  // namespace paddle