dist_simnet_bow.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import time
import math
import random

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main

DTYPE = "int64"
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
DATA_MD5 = '24e49366eb0611c552667989de2f57d5'

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def get_acc(cos_q_nt, cos_q_pt, batch_size):
    cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
    cond = fluid.layers.cast(cond, dtype='float64')
    cond_3 = fluid.layers.reduce_sum(cond)
    acc = fluid.layers.elementwise_div(
        cond_3,
        fluid.layers.fill_constant(
            shape=[1], value=batch_size * 1.0, dtype='float64'),
        name="simnet_acc")
    return acc


def get_loss(cos_q_pt, cos_q_nt):
    loss_op1 = fluid.layers.elementwise_sub(
        fluid.layers.fill_constant_batch_size_like(
            input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'),
        cos_q_pt)
    loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
    loss_op3 = fluid.layers.elementwise_max(
        fluid.layers.fill_constant_batch_size_like(
            input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
        loss_op2)
    avg_cost = fluid.layers.mean(loss_op3)
    return avg_cost


78 79 80 81 82 83 84
def get_optimizer(op="sgd"):
    if op.upper() == "sgd".upper():
        optimizer = fluid.optimizer.SGD(learning_rate=base_lr)
    elif op.upper() == "adam".upper():
        optimizer = fluid.optimizer.Adam(learning_rate=base_lr)
    else:
        optimizer = fluid.optimizer.SGD(learning_rate=base_lr)
85 86 87
    return optimizer


88 89 90 91
def train_network(batch_size,
                  is_distributed=False,
                  is_sparse=False,
                  is_self_contained_lr=False):
92 93 94
    # query
    q = fluid.layers.data(
        name="query_ids", shape=[1], dtype="int64", lod_level=1)
95 96
    # embedding
    q_emb = fluid.embedding(
97 98 99 100 101 102
        input=q,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
103 104 105
            learning_rate=emb_lr) if is_self_contained_lr else fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__"),
106
        is_sparse=is_sparse)
107 108
    q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
    # vsum
109 110
    q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
    q_ss = fluid.layers.softsign(q_sum)
111
    # fc layer after conv
112 113 114 115 116 117 118 119 120 121 122 123
    q_fc = fluid.layers.fc(
        input=q_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__q_fc__",
            learning_rate=base_lr))
    # label data
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    # pt
    pt = fluid.layers.data(
        name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
124 125
    # embedding
    pt_emb = fluid.embedding(
126 127 128 129 130 131
        input=pt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
132 133 134
            learning_rate=emb_lr) if is_self_contained_lr else fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__"),
135
        is_sparse=is_sparse)
136 137
    pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
    # vsum
138 139
    pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
    pt_ss = fluid.layers.softsign(pt_sum)
140
    # fc layer
141 142 143 144 145 146 147 148 149 150 151
    pt_fc = fluid.layers.fc(
        input=pt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__fc__",
            learning_rate=base_lr),
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
    # nt
    nt = fluid.layers.data(
        name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
152 153
    # embedding
    nt_emb = fluid.embedding(
154 155 156 157 158 159
        input=nt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
160 161 162
            learning_rate=emb_lr) if is_self_contained_lr else fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__"),
163
        is_sparse=is_sparse)
164 165
    nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
    # vsum
166 167
    nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
    nt_ss = fluid.layers.softsign(nt_sum)
168
    # fc layer
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    nt_fc = fluid.layers.fc(
        input=nt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__fc__",
            learning_rate=base_lr),
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
    cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
    cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
    # loss
    avg_cost = get_loss(cos_q_pt, cos_q_nt)
    # acc
    acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
    return [avg_cost, acc, cos_q_pt]


def combination(x, y):
    res = [[[xi, yi] for yi in y] for xi in x]
    return res[0]


def get_one_data(file_list):
    for file in file_list:
        contents = []
        with open(file, "r") as fin:
            for i in fin:
                contents.append(i.strip())
            for index, q in enumerate(contents):
                try:
                    one_data = [[int(j) for j in i.split(" ")]
                                for i in q.split(";")[:-1]]
                    if one_data[1][0] + one_data[1][1] != len(one_data) - 3:
                        q = fin.readline()
                        continue
                    tmp = combination(one_data[3:3 + one_data[1][0]],
                                      one_data[3 + one_data[1][0]:])
                except Exception as e:
                    continue

                for each in tmp:
                    yield [one_data[2], 0, each[0], each[1]]


def get_batch_reader(file_list, batch_size):
    def batch_reader():
        res = []
        for i in get_one_data(file_list):
            if random.random() <= sample_rate:
                res.append(i)
            if len(res) >= batch_size:
                yield res
                res = []

    return batch_reader


def get_train_reader(batch_size):
    # The training data set.
    train_file = os.path.join(paddle.dataset.common.DATA_HOME, "simnet",
                              "train")
    train_reader = get_batch_reader([train_file], batch_size)
    train_feed = ["query_ids", "pos_title_ids", "neg_title_ids", "label"]
    return train_reader, train_feed


class TestDistSimnetBow2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        # Train program
        avg_cost, acc, predict = \
239 240 241 242
            train_network(batch_size,
                          bool(int(os.environ["IS_DISTRIBUTED"])),
                          bool(int(os.environ["IS_SPARSE"])),
                          bool(int(os.environ["IS_SELF_CONTAINED_LR"])))
243 244 245 246

        inference_program = fluid.default_main_program().clone()

        # Optimization
247 248
        opt = os.getenv('OPTIMIZER', 'sgd')
        opt = get_optimizer(opt)
249 250 251 252 253 254 255 256 257 258
        opt.minimize(avg_cost)

        # Reader
        train_reader, _ = get_train_reader(batch_size)
        return inference_program, avg_cost, train_reader, train_reader, acc, predict


if __name__ == "__main__":
    paddle.dataset.common.download(DATA_URL, 'simnet', DATA_MD5, "train")
    runtime_main(TestDistSimnetBow2x2)