engine.h 17.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
34
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
36

W
wanghuancoder 已提交
37 38 39 40 41 42
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

Y
Yan Chunwei 已提交
43 44 45 46
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
47 48 49 50
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
74
  PADDLE_ENFORCE_GT(shape.size(), 0UL,
75
                    platform::errors::InvalidArgument(
76
                        "TensorRT's tensor input requires at least 1 "
77 78 79 80 81 82 83
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at most 4 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
84 85 86 87 88 89 90 91 92 93 94 95 96
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
97 98
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
99 100 101 102 103 104
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
105 106
      return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
107 108 109 110 111 112
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
113 114 115 116 117 118 119 120 121
      return nvinfer1::Dims2(shape[1], shape[2]);
    }
    return nvinfer1::DimsCHW(shape[1], 1, 1);
  } else {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsNCHW(shape[0], shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
122 123 124 125 126 127
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
128 129 130 131
  }
}
}  // NOLINT

N
nhzlx 已提交
132
class TRTInt8Calibrator;
W
wanghuancoder 已提交
133

Y
Yan Chunwei 已提交
134 135 136 137
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
138
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
139
 */
140 141
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
142
  using ShapeMapType = std::map<std::string, std::vector<int>>;
143

Y
Yan Chunwei 已提交
144 145 146 147
 public:
  // Weight is model parameter.
  class Weight {
   public:
148
    Weight() = default;
149
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
150 151 152 153
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
154
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
155

156 157
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
158 159 160 161
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
162 163 164 165
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
166 167 168
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
169
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
170
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
171 172
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
173
        precision_(precision),
N
nhzlx 已提交
174
        calibrator_(calibrator),
N
nhzlx 已提交
175
        device_id_(device_id),
176 177 178
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
179
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
202
    dy::initLibNvInferPlugins(&logger, "");
203
  }
Y
Yan Chunwei 已提交
204

205
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
206

207
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
208 209 210 211 212 213 214
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
215 216
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
217

L
Luo Tao 已提交
218 219 220
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
221 222

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
223 224 225 226 227 228 229 230 231 232 233 234
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
N
nhzlx 已提交
235 236

  nvinfer1::IHostMemory* Serialize() {
237 238 239 240
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
N
nhzlx 已提交
241 242 243 244 245
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
246
    freshDeviceId();
N
nhzlx 已提交
247
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

P
Pei Yang 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          nullptr));
#else

      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "To enable dynamic shape support, the TensorRT version should be "
          "greater than 6.0.0"));

#endif
    } else {
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
    }
288 289 290 291 292 293 294 295
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
N
nhzlx 已提交
296 297
  }

298 299
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
300 301 302 303 304 305 306

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
307
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
308
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
309
                                    int num_inputs, plugin::PluginTensorRT*);
310 311 312 313 314 315 316
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
317 318 319 320 321 322 323 324

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
325

326 327 328 329 330 331
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
332 333
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
334 335 336
    suffix_counter += 1;
  }

337
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
338 339
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
340 341
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }

342 343 344 345 346 347
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

  nvinfer1::INetworkDefinition* network() {
    if (with_dynamic_shape_) {
      return infer_networkv2_.get();
    } else {
      return infer_network_.get();
    }
  }

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
369 370
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
371
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
372 373
  bool with_dynamic_shape() { return with_dynamic_shape_; }

374 375 376 377 378 379 380 381 382
#if IS_TRT_VERSION_GE(6000)
  nvinfer1::IPluginV2Layer* AddPluginV2(nvinfer1::ITensor* const* inputs,
                                        int num_inputs,
                                        plugin::DynamicPluginTensorRT* plugin) {
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

Y
Yan Chunwei 已提交
383
 private:
N
nhzlx 已提交
384 385 386 387 388
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
389 390
  // the max batch size
  int max_batch_;
391 392
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
393 394
  // the max memory size the engine uses
  int max_workspace_;
395

Z
Zhaolong Xing 已提交
396
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
397 398 399
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
400

N
nhzlx 已提交
401
  int device_id_;
402 403 404
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
405
  bool disable_trt_plugin_fp16_{false};
406
  bool use_oss_{false};
407 408
  bool use_dla_{false};
  int dla_core_{0};
409
  bool with_ernie_{false};
Y
Yan Chunwei 已提交
410 411 412
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
413 414
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
415

416
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
417 418 419 420

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
421 422 423 424 425
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
426 427 428 429 430 431
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
432 433
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
434
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
435
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
436 437 438 439 440 441

  // For dynamic shape
  bool with_dynamic_shape_{false};
  infer_ptr<nvinfer1::INetworkDefinition> infer_networkv2_;
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
442
  nvinfer1::IOptimizationProfile* optim_profile_;
443
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
444
#endif
445
  std::mutex mutex_;
Y
Yan Chunwei 已提交
446 447
};  // class TensorRTEngine

448
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
449 450 451 452 453 454 455 456 457
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
458 459
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
460

461 462 463 464 465 466 467 468 469 470 471 472
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
473 474 475 476
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
477 478 479
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
480
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
481
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
482 483 484 485
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
486 487 488 489 490 491 492 493 494 495 496 497 498 499
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
500 501 502
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle