sequence_pad_op.cc 9.8 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pad_op.h"
16 17
#include <memory>
#include <string>
Y
yangyaming 已提交
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class SequencePadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
 protected:
Y
yangyaming 已提交
27
  void InferShape(framework::InferShapeContext* ctx) const override {
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of SequencePadOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("PadValue"), true,
                      "Input(PadValue) of SequencePadOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of SequencePadOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Length"), true,
                      "Output(Length) of SequencePadOp should not be null.");
Y
yangyaming 已提交
36 37

    auto x_dims = ctx->GetInputDim("X");
38
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
39
                      "The rank of Input(X) can't be less than 2.");
40 41
    auto time_step_dims = framework::slice_ddim(x_dims, 1, x_dims.size());
    auto pad_value_dims = ctx->GetInputDim("PadValue");
42 43 44 45 46
    PADDLE_ENFORCE_EQ(pad_value_dims == framework::make_ddim({1}) ||
                          pad_value_dims == time_step_dims,
                      true,
                      "The Input(PadValue) must be a scalar or a tensor whose "
                      "shape equals to time steps in sequences");
Y
yangyaming 已提交
47

F
fengjiayi 已提交
48
    int out_dim_0 = -1;
Y
yangyaming 已提交
49

50
    int padded_length = ctx->Attrs().Get<int>("padded_length");
Y
yangyaming 已提交
51
    if (ctx->IsRuntime()) {
52
      // run time
Y
yangyaming 已提交
53 54
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
55
      const auto& x_lod = x_var->Get<LoDTensor>().lod();
56 57
      PADDLE_ENFORCE_EQ(x_lod.empty(), false,
                        "The Input(X) must hold lod info.");
58 59 60 61 62 63 64 65 66 67 68
      const auto& x_lod_0 = x_lod[0];
      PADDLE_ENFORCE_GE(x_lod_0.size(), 2,
                        "The Input(X)'s lod info is corrupted.");
      PADDLE_ENFORCE_EQ(
          x_dims[0], static_cast<int64_t>(x_lod_0.back()),
          "The Input(X)'s lod info mismatches the actual tensor shape.");

      int seq_num = x_lod_0.size() - 1;
      int max_seq_len = math::MaximumSequenceLength(x_lod_0);
      if (padded_length == -1) {
        padded_length = max_seq_len;
Y
yangyaming 已提交
69
      }
70 71 72
      PADDLE_ENFORCE_GE(padded_length, max_seq_len,
                        "The Attr(padded_length) must be -1 or an int greater "
                        "than the length of the longest original sequence.");
F
fengjiayi 已提交
73
      out_dim_0 = seq_num;
Y
yangyaming 已提交
74
    } else {
75
      // compile time
76 77 78
      if (padded_length == -1) {
        padded_length = 1;
      }
79 80 81
      PADDLE_ENFORCE_GT(
          ctx->GetLoDLevel("X"), 0,
          "The LoD level Input(X) of sequence_pad should be larger than 0.");
Y
yangyaming 已提交
82 83
    }

84
    std::vector<int> out_dims_vec{out_dim_0, padded_length};
85
    std::vector<int> len_dims_vec{out_dim_0};
86
    auto time_step_dims_vec = framework::vectorize<int>(time_step_dims);
F
fengjiayi 已提交
87 88 89
    out_dims_vec.insert(out_dims_vec.end(), time_step_dims_vec.begin(),
                        time_step_dims_vec.end());
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
90 91 92 93 94 95
    ctx->SetOutputDim("Length", framework::make_ddim(len_dims_vec));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
96
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
97
    return framework::OpKernelType(data_type, ctx.device_context());
Y
yangyaming 已提交
98 99 100 101 102
  }
};

class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
103
  void Make() override {
Y
yangyaming 已提交
104 105
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input variable which "
106 107 108 109 110 111 112 113 114
             "should contain lod information.");
    AddInput("PadValue",
             "(LoDTensor), this Tensor holds values that will be fill into "
             "padded steps. It can be a scalar or a tensor whose shape equals "
             "to time steps in sequences. If it's a scalar, it will be "
             "automatically broadcasted to the shape of time step.");
    AddOutput(
        "Out",
        "(LoDTensor) The output vairable, which contains padded sequences.");
115 116 117 118
    AddOutput(
        "Length",
        "(LoDTensor) The output vairable, which contains the actual length of "
        "sequences before padding.");
119 120 121 122 123 124 125 126
    AddAttr<int>(
        "padded_length",
        "The length of padded sequences. It can be setted to -1 or "
        "any positive int. When it is -1, all sequences will be padded up to "
        "the length of the longest one among them; when it a certain positive "
        "value, it must be greater than the length of the longest original "
        "sequence.")
        .SetDefault(-1);
Y
yangyaming 已提交
127
    AddComment(R"DOC(
F
fengjiayi 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      Sequence Pad Operator

      This operator pads sequences in a same batch to a consistent length. 
      The length is specified by attribute 'padded_length'. New elements, 
      whose values are specified by input 'PadValue', will be appended to 
      the end of each sequence, to make their final lengths consistent.

      Following are cases to better explain how this works:

      Case 1:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0, 2,       5]]
          X.data = [a, b, c, d, e]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = 4,
F
fengjiayi 已提交
145 146 147
      then we get LoDTensor:
          Out.data = [[a, b, 0, 0], 
                      [c, d, e, 0]]
148
          Length.data = [2, 3]
F
fengjiayi 已提交
149 150 151 152 153 154 155 156 157 158
      
      Case 2:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
159 160 161
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [0, 0]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
162
          Length.data = [2, 3]
163
 
F
fengjiayi 已提交
164 165 166 167 168 169 170 171 172
      Case 3:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [p1, p2]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
173 174 175
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [p1, p2]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
176
          Length.data = [2, 3]
Y
yangyaming 已提交
177 178 179 180 181 182 183 184 185 186

    )DOC");
  }
};

class SequencePadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
187 188 189 190 191
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of SequencePadGradOp should not be null.");
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        "Input(Out@GRAD) of SequencePadGradOp should not be null.");
Y
yangyaming 已提交
192 193 194 195 196 197

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }
198 199 200 201

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
202 203
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
204 205
    return framework::OpKernelType(data_type, ctx.device_context());
  }
Y
yangyaming 已提交
206 207
};

H
hong 已提交
208 209
template <typename T>
class SequencePadGradOpMaker : public framework::SingleGradOpMaker<T> {
210
 public:
H
hong 已提交
211
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
212 213

 protected:
H
hong 已提交
214 215
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
216
    op->SetType("sequence_pad_grad");
H
hong 已提交
217 218 219 220
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
221 222 223 224 225 226 227
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequencePadGradOpNoNeedBufferVarsInference, "X");

Y
yangyaming 已提交
228 229 230 231 232
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
H
hong 已提交
233 234
                  ops::SequencePadGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePadGradOpMaker<paddle::imperative::OpBase>);
235 236
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp,
                  ops::SequencePadGradOpNoNeedBufferVarsInference);
Y
yangyaming 已提交
237 238 239 240 241 242 243 244 245 246 247 248
REGISTER_OP_CPU_KERNEL(
    sequence_pad,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    sequence_pad_grad,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);