device.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the functions to manipulate devices 
16 17
import re

18 19
from paddle.fluid import core
from paddle.fluid import framework
20
from paddle.fluid.dygraph.parallel import ParallelEnv
21
from paddle.fluid.framework import is_compiled_with_cuda  #DEFINE_ALIAS
22

23
__all__ = [
24
    'get_cudnn_version',
25
    'set_device',
26 27 28
    'get_device',
    'XPUPlace',
    'is_compiled_with_xpu'
29 30 31 32 33 34
    #            'cpu_places',
    #            'CPUPlace',
    #            'cuda_pinned_places',
    #            'cuda_places',
    #            'CUDAPinnedPlace',
    #            'CUDAPlace',
35
    'is_compiled_with_cuda'
36 37
]

38 39 40
_cudnn_version = None


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def is_compiled_with_xpu():
    """
    Whether paddle was built with WITH_XPU=ON to support Baidu Kunlun

    Returns (bool): whether paddle was built with WITH_XPU=ON

    Examples:
        .. code-block:: python

            import paddle
            support_xpu = paddle.device.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


def XPUPlace(dev_id):
    """
    Return a Baidu Kunlun Place

    Parameters:
        dev_id(int): Baidu Kunlun device id

    Examples:
        .. code-block:: python

            import paddle
            place = paddle.device.XPUPlace(0)
    """
    return core.XPUPlace(dev_id)


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def get_cudnn_version():
    """
    This funciton return the version of cudnn. the retuen value is int which represents the 
    cudnn version. For example, if it return 7600, it represents the version of cudnn is 7.6.
    
    Returns:
        int: A int value which represents the cudnn version. If cudnn version is not installed, it return None.

    Examples:
        .. code-block:: python
            
            import paddle

            cudnn_version = get_cudnn_version()



    """
    global _cudnn_version
    if not core.is_compiled_with_cuda():
        return None
    if _cudnn_version is None:
        cudnn_version = int(core.cudnn_version())
        _cudnn_version = cudnn_version
        if _cudnn_version < 0:
            return None
        else:
            return cudnn_version
    else:
        return _cudnn_version

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

def set_device(device):
    """
    Paddle supports running calculations on various types of devices, including CPU and GPU.
    They are represented by string identifiers. This function can specify the global device
    which the OP will run.

    Parameters:
        device(str): This parameter determines the specific running device.
            It can be ``cpu`` or ``gpu:0``. When ``device`` is ``cpu``, the
            program is running on the cpu. When ``device`` is ``gpu``, the
            program is running ont the gpu.
    Examples:

     .. code-block:: python
            
        import paddle
120 121
        paddle.disable_static()
        paddle.set_device("cpu")
122 123 124 125 126 127 128
        x1 = paddle.ones(name='x1', shape=[1, 2], dtype='int32')
        x2 = paddle.zeros(name='x2', shape=[1, 2], dtype='int32')
        data = paddle.stack([x1,x2], axis=1)
    """
    lower_device = device.lower()
    if lower_device == 'cpu':
        place = core.CPUPlace()
129 130 131 132 133 134
    elif lower_device == 'gpu':
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be 'gpu', " \
                "since PaddlePaddle is not compiled with CUDA")
        place = core.CUDAPlace(ParallelEnv().dev_id)
135
    else:
136
        avaliable_device = re.match(r'gpu:\d+', lower_device)
137 138
        if not avaliable_device:
            raise ValueError(
139 140 141 142 143 144
                "The device must be a string which is like 'cpu', 'gpu' or 'gpu:0'"
            )
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_device))
145 146 147 148
        device_info_list = device.split(':', 1)
        device_id = device_info_list[1]
        device_id = int(device_id)
        place = core.CUDAPlace(device_id)
149 150
    framework._set_expected_place(place)
    return place
151 152 153 154 155 156 157 158 159 160 161 162 163 164


def get_device():
    """
    This funciton can get the current global device of the program is running.
    It's a string which is like 'cpu' and 'gpu:0'. if the global device is not
    set, it will return a string which is 'gpu:0' when cuda is avaliable or it 
    will return a string which is 'cpu' when cuda is not avaliable.

    Examples:

     .. code-block:: python
            
        import paddle
165 166
        paddle.disable_static()
        device = paddle.get_device()
167 168 169 170 171 172 173 174 175 176 177

    """
    device = ''
    place = framework._current_expected_place()
    if isinstance(place, core.CPUPlace):
        device = 'cpu'
    elif isinstance(place, core.CUDAPlace):
        device_id = place.get_device_id()
        device = 'gpu:' + str(device_id)

    return device