conv_transpose_op.cc 9.0 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35 36 37

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  for (size_t i = 0; i < paddings.size(); ++i) {
    PADDLE_ENFORCE_EQ(paddings[i], 0,
                      "No Padding allowed in conv transpose op.");
  }

C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47 48
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
                    "ConvTransposeOp paddings dimension and Conv strides "
                    "dimension should be the same.");
C
chengduoZH 已提交
49 50 51
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
52

C
chengduoZH 已提交
53
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
C
chengduoZH 已提交
54
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
55 56 57
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] +
                           filter_dims[i + 2]);
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

C
chengduoZH 已提交
61 62 63 64 65 66 67
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
    framework::OpProto* proto, framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
68 69
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
70
  AddInput("Filter",
C
chengduoZH 已提交
71
           "(Tensor) The filter tensor of convolution transpose operator. "
C
chengduoZH 已提交
72 73
           "The format of the filter tensor is CMHW, where C is the number of "
           "output image channels, M is the number of input image channels, "
C
chengduoZH 已提交
74
           "H is the height of the filter, and W is the width of the filter. "
C
chengduoZH 已提交
75
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
76
           "the convolution transpose scenario.");
C
chengduoZH 已提交
77
  AddOutput("Output",
C
chengduoZH 已提交
78
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
79
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
80 81 82
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> defalut:{1, 1}), strides of "
                            "convolution transpose operator.")
C
chengduoZH 已提交
83
      .SetDefault({1, 1});
C
chengduoZH 已提交
84 85
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
86 87
      "(vector<int> defalut:{0, 0}), paddings(h_pad, w_pad) of convolution "
      "transpose operator.")
C
chengduoZH 已提交
88 89
      .SetDefault({0, 0});
  AddComment(R"DOC(
C
chengduoZH 已提交
90 91
Convolution2D Transpose Operator.

C
chengduoZH 已提交
92 93 94
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
95 96

Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
C
chengduoZH 已提交
97 98
size, C is the number of channels, H is the height of the feature, and 
W is the width of the feature. Parameters(ksize, strides, paddings) are two elements.
C
chengduoZH 已提交
99 100 101 102 103 104 105 106 107 108 109
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
  Input:
       Input shape: (N, C_in, H_in, W_in)
       Filter shape: (C_in, C_out, H_f, W_f)
  Output:
       Output shape: (N, C_out, H_out, W_out)
  where
       H_out = (H_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
       W_out = (W_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
C
chengduoZH 已提交
110 111 112
)DOC");
}

C
chengduoZH 已提交
113 114 115
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
    framework::OpProto* proto, framework::OpAttrChecker* op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
116 117 118 119 120 121
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
122 123 124
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
           "The format of the filter tensor is CMDHW, where C is the number of "
C
chengduoZH 已提交
125 126 127
           "output image channels, M is the number of input image channels, D "
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
128
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
129
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
130 131 132 133
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
134 135
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
136 137 138
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> defalut:{1, 1, 1}), strides of "
                            "convolution transpose operator.")
C
chengduoZH 已提交
139
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
140 141 142
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> defalut:{0, 0, 0}), paddings(d_pad, "
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
143 144
      .SetDefault({0, 0, 0});
  AddComment(R"DOC(
C
chengduoZH 已提交
145 146
Convolution3D Transpose Operator.

C
chengduoZH 已提交
147 148 149
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
C
chengduoZH 已提交
150 151

Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
C
chengduoZH 已提交
152 153 154
size, C is the number of channels, D is the depth of the feature, 
H is the height of the feature, and W is the width of the feature. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
155 156 157 158 159 160 161 162 163 164 165 166
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
  Input:
       Input shape: (N, C_in, D_in, H_in, W_in)
       Filter shape: (C_in, C_out, D_f, H_f, W_f)
  Output:
       Output shape: (N, C_out, D_out, H_out, W_out)
  where
       D_out = (D_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
       H_out = (H_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
       W_out = (W_in - 1) * strides[2] - 2 * paddings[2] + filter_size[2];
C
chengduoZH 已提交
167 168 169
)DOC");
}

C
chengduoZH 已提交
170
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
185

C
chengduoZH 已提交
186 187
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
188 189

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
190
    conv2d_transpose,
191
    ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
192
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
193
    conv2d_transpose_grad,
194
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
195

C
chengduoZH 已提交
196 197
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
198 199

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
200
    conv3d_transpose,
201
    ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
202
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
203
    conv3d_transpose_grad,
204
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);