test_elementwise_mod_op.py 8.4 KB
Newer Older
P
phlrain 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
import paddle.fluid.core as core
from op_test import OpTest

import random


class TestElementwiseModOp(OpTest):
    def init_kernel_type(self):
        self.use_mkldnn = False

    def setUp(self):
        self.op_type = "elementwise_mod"
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
        self.outputs = {'Out': self.out}

    def test_check_output(self):
        self.check_output()

    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def init_dtype(self):
54
        self.dtype = np.int32
55 56 57 58 59 60 61 62 63 64 65 66 67 68

    def init_axis(self):
        pass


class TestElementwiseModOp_scalar(TestElementwiseModOp):
    def init_input_output(self):
        scale_x = random.randint(0, 100000000)
        scale_y = random.randint(1, 100000000)
        self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
        self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


69 70 71 72 73 74 75
class TestElementwiseModOpFloat(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float32

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
76
        self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
77 78

    def test_check_output(self):
79
        self.check_output()
80 81 82 83 84 85 86


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
    def init_dtype(self):
        self.dtype = np.float64


87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
class TestRemainderAPI(unittest.TestCase):
    def setUp(self):
        paddle.set_default_dtype("float64")
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        # rule 1
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = np.array([1, 2, 3])
            self.assertRaises(TypeError, paddle.remainder, x=x, y=y)

        # rule 3: 
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = fluid.data(name="y", shape=[3], dtype="float32")
            self.assertRaises(TypeError, paddle.remainder, x=x, y=y)

        # rule 4: x is Tensor, y is scalar
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = 2
            exe = fluid.Executor(place)
            res = x % y
            np_z = exe.run(fluid.default_main_program(),
                           feed={"x": np.array([2, 3, 4]).astype('float64')},
                           fetch_list=[res])
            z_expected = np.array([0., 1., 0.])
            self.assertEqual((np_z[0] == z_expected).all(), True)

        # rule 5: y is Tensor, x is scalar
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = 3
            y = fluid.data(name="y", shape=[3], dtype="float32")
            self.assertRaises(TypeError, paddle.remainder, x=x, y=y)

        # rule 6: y is Tensor, x is Tensor
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = fluid.data(name="y", shape=[1], dtype="float64")
            exe = fluid.Executor(place)
            res = x % y
            np_z = exe.run(fluid.default_main_program(),
                           feed={
                               "x": np.array([1., 2., 4]).astype('float64'),
                               "y": np.array([1.5]).astype('float64')
                           },
                           fetch_list=[res])
            z_expected = np.array([1., 0.5, 1.0])
            self.assertEqual((np_z[0] == z_expected).all(), True)

        # rule 6: y is Tensor, x is Tensor
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[6], dtype="float64")
            y = fluid.data(name="y", shape=[1], dtype="float64")
            exe = fluid.Executor(place)
            res = x % y
            np_z = exe.run(
                fluid.default_main_program(),
                feed={
                    "x": np.array([-3., -2, -1, 1, 2, 3]).astype('float64'),
                    "y": np.array([2]).astype('float64')
                },
                fetch_list=[res])
            z_expected = np.array([1., 0., 1., 1., 0., 1.])
            self.assertEqual((np_z[0] == z_expected).all(), True)

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)
159 160

    def test_dygraph(self):
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        for place in self.places:
            with fluid.dygraph.guard(place):
                # rule 1 : avoid numpy.ndarray
                np_x = np.array([2, 3, 4])
                np_y = np.array([1, 5, 2])
                x = paddle.to_tensor(np_x)
                self.assertRaises(TypeError, paddle.remainder, x=x, y=np_y)

                # rule 3: both the inputs are Tensor
                np_x = np.array([2, 3, 4])
                np_y = np.array([1, 5, 2])
                x = paddle.to_tensor(np_x, dtype="float32")
                y = paddle.to_tensor(np_y, dtype="float64")
                self.assertRaises(TypeError, paddle.remainder, x=x, y=y)

                # rule 4: x is Tensor, y is scalar
                np_x = np.array([2, 3, 4])
                x = paddle.to_tensor(np_x, dtype="int32")
                y = 2
                z = x % y
                z_expected = np.array([0, 1, 0])
                self.assertEqual((z_expected == z.numpy()).all(), True)

                # rule 5: y is Tensor, x is scalar
                np_x = np.array([2, 3, 4])
                x = paddle.to_tensor(np_x)
                self.assertRaises(TypeError, paddle.remainder, x=3, y=x)

                # rule 6: y is Tensor, x is Tensor
                np_x = np.array([1., 2., 4])
                np_y = np.array([1.5])
                x = paddle.to_tensor(np_x)
                y = paddle.to_tensor(np_y)
                z = x % y
                z_expected = np.array([1., 0.5, 1.0])
                self.assertEqual((z_expected == z.numpy()).all(), True)

                # rule 6: y is Tensor, x is Tensor
                np_x = np.array([-3., -2, -1, 1, 2, 3])
                np_y = np.array([2.])
                x = paddle.to_tensor(np_x)
                y = paddle.to_tensor(np_y)
                z = x % y
                z_expected = np.array([1., 0., 1., 1., 0., 1.])
                self.assertEqual((z_expected == z.numpy()).all(), True)
206

S
ShenLiang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                np_x = np.array([-3.3, 11.5, -2, 3.5])
                np_y = np.array([-1.2, 2., 3.3, -2.3])
                x = paddle.to_tensor(np_x)
                y = paddle.to_tensor(np_y)
                z = x % y
                z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
                self.assertEqual(np.allclose(z_expected, z.numpy()), True)

                np_x = np.array([-3, 11, -2, 3])
                np_y = np.array([-1, 2, 3, -2])
                x = paddle.to_tensor(np_x, dtype="int64")
                y = paddle.to_tensor(np_y, dtype="int64")
                z = x % y
                z_expected = np.array([0, 1, 1, -1])
                self.assertEqual(np.allclose(z_expected, z.numpy()), True)

223

224 225
if __name__ == '__main__':
    unittest.main()