mkldnn_reuse.h 45.4 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

23
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
24
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
27 28 29 30 31 32
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = dnnl::memory;
J
Jacek Czaja 已提交
37

38 39 40 41 42
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
43
  MKLDNNHandlerNoCachingT(dnnl::engine engine, platform::Place cpu_place)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_, platform::errors::Unavailable("BWD_PD should be set when "
                                                 "getting BWD prim ."));
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

63
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
64 65 66 67 68 69 70
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
71
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
72 73 74 75 76 77
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
78
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
79 80 81 82
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
83
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
84 85 86 87 88 89
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

90
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
91 92 93 94 95 96
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
  }

97
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
98 99 100 101 102 103 104
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
105
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
106 107 108 109 110 111 112 113 114 115 116 117
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
118
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

182 183 184
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
185 186
  }

187 188 189
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md) {
    return std::make_shared<dnnl::memory>(md, engine_);
190 191
  }

192 193
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
194
    auto reorder_p =
195
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
196 197 198 199

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
200 201
                                         platform::TracerEventType::UserDefined,
                                         2, platform::EventRole::kUniqueOp);
202 203
    reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                 {DNNL_ARG_TO, *target_memory_p}});
204 205 206 207
    astream.wait();
  }

  template <typename F = T>
208 209 210
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, bool is_persistent = false,
211
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
212
    std::shared_ptr<dnnl::memory> target_memory_p;
213 214 215 216 217 218 219
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
220
      target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
221 222 223 224
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
225 226 227
      platform::RecordEvent record_reorder(
          "int_reorder", platform::TracerEventType::UserDefined, 2,
          platform::EventRole::kUniqueOp);
228 229
      reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                   {DNNL_ARG_TO, *target_memory_p}});
230 231 232 233 234 235 236
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

237
  dnnl::engine engine_;
238 239 240 241 242 243
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

244
template <typename T, typename TForward,
245 246
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
247 248
class MKLDNNHandlerT {
 public:
249
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, dnnl::engine engine,
250 251 252 253 254
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
255
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
256
        fwd_pd_(nullptr),
257 258 259
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
260

A
Adam 已提交
261
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
262
    const std::string key_p = key_ + "@fwd_p";
263 264 265
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
266
      forward_p = std::make_shared<TForward>(*fwd_pd_);
267 268 269 270 271
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
272
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
273
    const std::string key_p = key_ + "@bwd_p";
274 275 276
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
277
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
278 279 280 281 282
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

283 284 285 286 287 288
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
289
                                             "BWD_PD should be set when "
290 291 292 293 294 295 296 297
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

298
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
299 300
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
301 302
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
303 304
  }

305
  template <typename T_out = T>
306
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
307 308
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
309
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
310 311 312
                                            "@dst_mem_p");
  }

313
  template <typename T_out = T>
314
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
315 316 317
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

318
  template <typename T_out = T>
319
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
320
      const framework::Tensor* output) {
321 322 323 324
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
325 326
  }

327
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
328 329
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
330 331
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
332 333
  }

334
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
335
      framework::Tensor* diffsrc) {
A
Adam 已提交
336 337 338 339
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
340 341
  }

342
  // Buffer of given Tensor is used for oneDNN computation
343
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
344 345 346 347
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
348
            "BWD_W_PD should be set when getting BWD grad of weights."));
349 350 351 352 353 354 355
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
356
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
357 358 359
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
360
            "BWD_W_PD should be set when getting BWD grad of weights."));
361 362 363 364
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

365
 protected:
366
  bool isCached() {
367 368 369 370 371 372 373
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

374
  bool isBwdCached() {
375
    const std::string key_pd = key_ + "@bwd_pd";
376 377 378
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

379 380 381
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
382 383 384 385 386 387 388 389
      if (std::is_same<TBackward_params, mkldnn_dummy_primitive>::value ==
          false) {
        const std::string key_bw_w_pd = key_ + "@bwd_w_pd";
        bwd_w_pd_ =
            std::static_pointer_cast<typename TBackward_params::primitive_desc>(
                dev_ctx_.GetBlob(key_bw_w_pd));
      }

390 391 392 393 394 395 396 397 398
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
399 400
  }

401 402 403 404 405 406
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
407 408 409 410 411 412 413 414 415 416 417
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

439 440
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
441
    // fwd_pd_ is set during grad by calling
442
    // AcquireForwardPrimitiveDescriptor
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

458
  template <typename... Args>
459
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
460
    // fwd_pd_ is set during grad by calling
461
    // AcquireForwardPrimitiveDescriptor
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

479
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
480
      const std::string& suffix) {
481
    return std::static_pointer_cast<dnnl::memory>(
482 483 484
        dev_ctx_.GetBlob(key_ + suffix));
  }

485 486
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr, const std::string& suffix) {
487
    const auto local_key = key_ + suffix;
488
    auto mem_p =
489
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
490
    if (mem_p == nullptr) {
491
      mem_p = std::make_shared<dnnl::memory>(md, engine_, ptr);
492 493 494 495 496 497 498
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

499 500
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, const std::string& suffix) {
501 502
    const auto local_key = key_ + suffix;
    auto mem_p =
503
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
504
    if (mem_p == nullptr) {
505
      mem_p = std::make_shared<dnnl::memory>(md, engine_);
506 507 508 509 510
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

511 512
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
513
    auto reorder_p =
514
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
515

516
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
517 518

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
519 520
                                         platform::TracerEventType::UserDefined,
                                         2, platform::EventRole::kUniqueOp);
521 522
    reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                 {DNNL_ARG_TO, *target_memory_p}});
523 524 525
    astream.wait();
  }

526
  template <typename F = T>
527 528 529
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, const std::string& suffix, bool is_persistent = false,
A
Adam Osewski 已提交
530 531
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
532 533 534 535 536 537 538 539
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
540 541 542 543 544 545
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
546 547 548
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
549
        target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
A
Adam Osewski 已提交
550 551 552 553 554 555 556 557 558 559 560
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p,
                                                        *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
561 562
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

563
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
564 565 566
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);
567 568
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
569 570 571 572 573 574 575
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
576
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
577 578 579 580 581

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

582 583
      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
584
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
585 586
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
C
chenjian 已提交
587 588 589
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);
590 591
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
592 593 594 595 596 597
        astream.wait();
      }
    }
    return target_memory_p;
  }

598
  std::shared_ptr<dnnl::memory> AcquireMemory(const std::string& suffix) {
599
    const auto local_key = key_ + suffix;
600
    return std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
601 602
  }

603
  const MKLDNNDeviceContext& dev_ctx_;
604
  dnnl::engine engine_;
605 606
  platform::Place place_;
  std::string key_common_;
607
  std::string key_;
608 609
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
610
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
611 612
};

613
template <typename T>
614 615
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
616
 public:
617
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
618
                      const dnnl::engine engine, platform::Place cpu_place,
619 620
                      const Tensor* x, const Tensor* y, Tensor* out,
                      float scale_x, float scale_y, float scale_out,
621
                      const dnnl::post_ops& post_ops = dnnl::post_ops{})
622
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
623 624
    const auto src_x_tz = phi::vectorize(x->dims());
    const auto src_y_tz = phi::vectorize(y->dims());
625 626 627
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
628 629
    const auto dst_tz = (out == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                         : phi::vectorize(out->dims());
630

631 632
    auto src0_md = x->mem_desc();
    auto src1_md = y->mem_desc();
633 634 635 636
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(), src_y_tz.end());
J
Jacek Czaja 已提交
637 638 639 640 641
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end());
      }
642 643 644 645 646
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(), src_x_tz.end());
J
Jacek Czaja 已提交
647 648 649 650 651
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end());
      }
652
      src0_md = src0_md.reshape(dims0_ex);
653
    }
654 655 656
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);

657
    auto attributes =
658
        CreateAttributes(algo, scale_x, scale_y, scale_out, post_ops);
659

660 661
    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            dst_md);
662
  }
663
  std::shared_ptr<dnnl::memory> AcquireSecondSrcMemory(
664 665
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
666 667
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
668
  }
669 670

 private:
671
  static inline dnnl::primitive_attr CreateAttributes(
672
      dnnl::algorithm op, float scale_x, float scale_y, float scale_out,
673
      dnnl::post_ops post_ops = dnnl::post_ops{}) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
690
    float scale_0 = scale_out / scale_x;
691
    float scale_1 =
692
        op == dnnl::algorithm::binary_add ? scale_out / scale_y : 1.0 / scale_y;
693 694 695 696 697
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
698
    if (post_ops.len() > 0) attributes.set_post_ops(post_ops);
699 700
    return attributes;
  }
701 702
};

703 704
template <typename T>
class BroadcastDataMKLDNNHandler
705
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
706 707
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
708
                             const dnnl::engine engine,
709 710 711
                             platform::Place cpu_place, const Tensor* x,
                             Tensor* out, float scale_x, float scale_y,
                             const std::vector<int64_t>& extended_x_dims)
712
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
713
    const auto src0_tz = phi::vectorize(out->dims());
714 715 716
    const auto src0_md =
        dnnl::memory::desc(src0_tz, platform::MKLDNNGetDataType<T>(),
                           platform::GetPlainMKLDNNFormat(src0_tz.size()));
717
    const auto src1_md = x->mem_desc().reshape(extended_x_dims);
718 719 720 721 722 723 724

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            src0_md);
725 726
  }

727
  template <typename T_out = T>
728 729 730
  std::shared_ptr<dnnl::memory> AcquireZeroedDstMemory(framework::Tensor* out) {
    T_out* ptr = out->mutable_data<T_out>(this->place_,
                                          this->fwd_pd_->dst_desc().get_size());
731
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
732
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
733 734 735
  }
};

736 737
template <typename T>
class ReductionMKLDNNHandler
738
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
739 740
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
741
                         const float eps, const dnnl::engine engine,
742
                         platform::Place cpu_place, const Tensor* x,
743 744
                         const Tensor* out, std::vector<int64_t> out_tz,
                         const dnnl::primitive_attr& attrs = NULL)
745 746
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
747 748
    const auto out_md = memory::desc(out_tz, platform::MKLDNNGetDataType<T>(),
                                     dnnl::memory::format_tag::any);
749

750 751 752
    if (attrs)
      this->AcquireForwardPrimitiveDescriptor(attrs, algo, x->mem_desc(),
                                              out_md, p, eps);
753
    else
754
      this->AcquireForwardPrimitiveDescriptor(algo, x->mem_desc(), out_md, p,
755
                                              eps);
756 757 758
  }
};

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
template <typename T>
class MatMulV2MKLDNNHandler
    : public paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul> {
 public:
  MatMulV2MKLDNNHandler(const dnnl::engine engine,
                        paddle::platform::Place cpu_place,
                        const std::vector<int64_t>& x_org_dims, bool trans_x,
                        const std::vector<int64_t>& y_org_dims, bool trans_y,
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
      : paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul>(engine,
                                                                   cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

    if (is_output_fused) {
      out_strides = FakeTransposeStrides(out_ddims);
    }

    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<T>(), out_strides);

    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<T>(input_data));
  }
};

867
template <typename T>
868
class ActivationMKLDNNHandler
869 870
    : public MKLDNNHandlerNoCachingT<T, dnnl::eltwise_forward,
                                     dnnl::eltwise_backward> {
871
 public:
872
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
873
                          const framework::ExecutionContext& ctx,
874
                          const dnnl::engine engine, Place cpu_place,
875
                          const framework::Tensor* x)
876 877 878
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::eltwise_forward,
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
879 880
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
881 882

    if (ctx.Type() == "scale") {
883 884
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
885 886 887
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
888 889 890 891 892
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
893 894 895 896 897 898 899 900
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
901 902
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
903
      if (algorithm == dnnl::algorithm::eltwise_swish) {
904 905 906
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
907
      }
908
    }
909

910
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
911 912
                                            algorithm, x->mem_desc(), alpha,
                                            beta);
913 914
  }

915
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
916
                          const framework::ExecutionContext& ctx,
917
                          const dnnl::engine engine, Place cpu_place,
918
                          const framework::Tensor* x, const Tensor* dout)
919 920 921
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::eltwise_forward,
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
922 923 924 925
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
926
    if (algorithm == dnnl::algorithm::eltwise_swish) {
927 928 929 930
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
931

932 933 934 935 936 937 938
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

939
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
940 941 942 943
                                            algorithm, x->mem_desc(), alpha,
                                            beta);
    this->AcquireBackwardPrimitiveDescriptor(algorithm, dout->mem_desc(),
                                             x->mem_desc(), alpha, beta);
944
  }
945

946
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
947 948
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
949
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
950
                                            to_void_cast<T>(input_data));
951 952 953
  }
};

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static const dnnl::algorithm AcquireActivationAlgorithm(
    std::string activation_name) {
  std::unordered_map<std::string, dnnl::algorithm> activation_map = {
      {"abs", dnnl::algorithm::eltwise_abs},
      {"clip", dnnl::algorithm::eltwise_clip},
      {"gelu", dnnl::algorithm::eltwise_gelu_erf},
      {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
      {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
      {"hard_swish", dnnl::algorithm::eltwise_hardswish},
      {"leaky_relu", dnnl::algorithm::eltwise_relu},
      {"mish", dnnl::algorithm::eltwise_mish},
      {"relu", dnnl::algorithm::eltwise_relu},
      {"relu6", dnnl::algorithm::eltwise_bounded_relu},
      {"sigmoid", dnnl::algorithm::eltwise_logistic},
      {"sqrt", dnnl::algorithm::eltwise_sqrt},
      {"swish", dnnl::algorithm::eltwise_swish},
      {"tanh", dnnl::algorithm::eltwise_tanh}};

  const auto& activation_type = activation_map.find(activation_name);

  PADDLE_ENFORCE_NE(activation_type, activation_map.end(),
                    platform::errors::InvalidArgument(
                        "Activation '%s' not found in oneDNN algorithms mapper",
                        activation_name));
  return activation_type->second;
}

981
class ReorderMKLDNNHandler {
982
 public:
A
Adam 已提交
983
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
984
                       framework::proto::VarType::Type vtype,
985
                       dnnl::memory::data_type dtype, dnnl::engine engine)
986
      : dims_(dims),
987
        vtype_(vtype),
988 989
        vtype_dst_(vtype),
        dtype_(dtype),
990 991
        dtype_dst_(dtype),
        engine_(engine) {}
992 993 994

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
995
                       dnnl::memory::data_type dtype,
996
                       framework::proto::VarType::Type vtype_dst,
997
                       dnnl::memory::data_type dtype_dst, dnnl::engine engine)
998
      : dims_(dims),
999 1000 1001
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
1002 1003
        dtype_dst_(dtype_dst),
        engine_(engine) {}
1004

1005 1006 1007 1008 1009
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

1010 1011 1012 1013
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
1014 1015
  }

1016
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
1017
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
1018
      const std::shared_ptr<dnnl::memory>& mem_p) {
1019
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
1020 1021
    auto sub_mem_p = std::make_shared<dnnl::memory>(sub_md, engine_,
                                                    mem_p->get_data_handle());
1022 1023 1024
    return sub_mem_p;
  }

1025 1026 1027
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
1028
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
1029
    auto dst_data = output->mutable_data(
1030
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
1031
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1032 1033
  }

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      framework::Tensor* output, const dnnl::memory::desc& src_md,
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

1050
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
1051
      framework::Tensor* output, const std::vector<int64_t>& dims,
1052 1053
      const MKLDNNMemoryFormat& fmt, platform::Place place) {
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
1054
    auto dst_data = output->mutable_data(
1055
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
1056
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1057 1058
  }

1059 1060 1061 1062
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
1063 1064
  }

1065 1066 1067 1068 1069 1070 1071 1072
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p),
                                           attrs);
  }

1073
 private:
A
Adam 已提交
1074
  std::vector<int64_t> dims_;
1075
  framework::proto::VarType::Type vtype_, vtype_dst_;
1076 1077
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
1078 1079
};

1080 1081 1082
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
1083 1084 1085
    std::vector<int64_t> dst_tz, const dnnl::engine& engine,
    std::shared_ptr<dnnl::memory::desc>& dst_md,  // NOLINT
    std::shared_ptr<dnnl::memory>& dst_memory,    // NOLINT
1086
    MKLDNNMemoryFormat output_format) {
1087 1088
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1089
  MKLDNNMemoryFormat dst_fmt;
1090

1091 1092 1093 1094 1095
  PADDLE_ENFORCE_LE(dst_dims, 5,
                    platform::errors::InvalidArgument(
                        "Dst memory for quantization can not have "
                        "dims > 5. But received dst_dims is %d.",
                        dst_dims));
1096
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1097

1098 1099 1100 1101 1102
  auto tmp_dst_md =
      platform::MKLDNNMemDesc({dst_tz},
                              paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<T>::DataType()),
                              dst_fmt);
1103
  dst_md.reset(new dnnl::memory::desc(tmp_dst_md));
A
Adam 已提交
1104
  dst_memory.reset(
1105
      new dnnl::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1106
}
A
Adam Osewski 已提交
1107

J
Jacek Czaja 已提交
1108 1109
}  // namespace platform
}  // namespace paddle