test_momentum_op.py 7.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
sidgoyal78 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
S
sidgoyal78 已提交
22 23


K
kavyasrinet 已提交
24
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
25 26
    def setUp(self):
        self.op_type = "momentum"
W
Wu Yi 已提交
27 28
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
29

W
Wu Yi 已提交
30 31 32 33
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
        learning_rate = np.array([0.001]).astype(self.dtype)
S
sidgoyal78 已提交
34
        mu = 0.0001
K
kavyasrinet 已提交
35
        use_nesterov = False
S
sidgoyal78 已提交
36 37 38 39 40 41 42 43 44 45

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {'mu': mu}

S
sidgoyal78 已提交
46
        velocity_out = mu * velocity + grad
K
kavyasrinet 已提交
47
        if use_nesterov:
48
            param_out = param - grad * learning_rate - \
K
kavyasrinet 已提交
49 50 51 52 53 54
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
55 56 57
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
58 59 60 61
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
62 63 64 65 66 67 68 69
class TestMomentumOpFp16(TestMomentumOp1):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
70
class TestMomentumOp2(OpTest):
71
    '''Test Momentum with default values for attributes
K
kavyasrinet 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    '''

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

91
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
92 93 94

        velocity_out = mu * velocity + grad
        if use_nesterov:
95
            param_out = param - grad * learning_rate - \
K
kavyasrinet 已提交
96 97 98
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
S
sidgoyal78 已提交
99 100 101 102 103 104 105

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class TestLarsMomentumOp(OpTest):
    def setUp(self):
        self.op_type = "lars_momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
            'lars_weight_decay': lars_weight_decay
        }

        pnorm = np.sqrt(np.square(param).sum())
        gnorm = np.sqrt(np.square(grad).sum())
        local_lr = learning_rate * lars_coeff * pnorm / (
            gnorm + lars_weight_decay * param)
        velocity_out = mu * velocity + local_lr * (grad + lars_weight_decay *
                                                   param)
        param_out = param - velocity_out

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
176 177 178 179 180
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
        velocity_out_np_array = np.full((height, row_numel),
181
                                        0.0).astype("float32")
D
dzhwinter 已提交
182
        velocity_out.set(velocity_out_np_array, place)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov)
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
204
        velocity_out_np_array = np.array(velocity_out)
205 206 207

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
208 209 210 211 212
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
        _velocity_out = mu * velocity_np_array + _grad_np_array
        _param = param_array
213
        if use_nesterov:
D
dzhwinter 已提交
214 215
            _param_out = _param - (_grad_np_array + _velocity_out * mu
                                   ) * lr_array
216
        else:
D
dzhwinter 已提交
217
            _param_out = _param - lr_array * _velocity_out
218
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
219
        self.assertTrue((_param_out == param_out_np_array).all())
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


S
sidgoyal78 已提交
237 238
if __name__ == "__main__":
    unittest.main()