affine_channel_op.cc 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
Zeng Jinle 已提交
15 16
#include <string>
#include <unordered_map>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

class AffineChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) Feature map input can be a 4D tensor with order NCHW "
             "or NHWC. It also can be a 2D tensor and C is the second "
             "dimension.");
    AddInput("Scale",
             "(Tensor) 1D input of shape (C), the c-th element "
             "is the scale factor of the affine transformation "
             "for the c-th channel of the input.");
    AddInput("Bias",
             "(Tensor) 1D input of shape (C), the c-th element "
             "is the bias of the affine transformation for the "
             "c-th channel of the input.");
    AddAttr<std::string>(
        "data_layout",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
    AddOutput("Out", "(Tensor) A tensor of the same shape and order with X.");
    AddComment(R"DOC(

Applies a separate affine transformation to each channel of the input. Useful
for replacing spatial batch norm with its equivalent fixed transformation.
The input also can be 2D tensor and applies a affine transformation in second
dimension.

$$Out = Scale*X + Bias$$

)DOC");
  }
};

class AffineChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
64 65 66 67
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AffineChannel");
    OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "AffineChannel");
    OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "AffineChannel");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "AffineChannel");
68 69 70 71 72 73 74 75 76 77 78

    auto x_dims = ctx->GetInputDim("X");
    auto scale_dims = ctx->GetInputDim("Scale");
    auto b_dims = ctx->GetInputDim("Bias");
    const framework::DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

    const int64_t C = (data_layout == framework::DataLayout::kNCHW
                           ? x_dims[1]
                           : x_dims[x_dims.size() - 1]);

79 80 81 82 83 84 85 86 87 88 89
    PADDLE_ENFORCE_EQ(
        scale_dims.size(), 1UL,
        platform::errors::InvalidArgument(
            "The dimensions of Input(Scale) must be 1,"
            "But received the dimensions of Input(Scale) is [%d] ",
            scale_dims.size()));
    PADDLE_ENFORCE_EQ(b_dims.size(), 1UL,
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(Bias) must be 1,"
                          "But received the dimensions of Input(Bias) is [%d] ",
                          scale_dims.size()));
T
tink2123 已提交
90
    if (ctx->IsRuntime() || scale_dims[0] > 0) {
91 92 93 94 95 96
      PADDLE_ENFORCE_EQ(
          scale_dims[0], C,
          platform::errors::InvalidArgument(
              "The first dimension value of Input(Scale) must be [%d],"
              "But received [%d].",
              C, scale_dims[0]));
T
tink2123 已提交
97 98
    }
    if (ctx->IsRuntime() || b_dims[0] > 0) {
99 100 101 102 103 104
      PADDLE_ENFORCE_EQ(
          b_dims[0], C,
          platform::errors::InvalidArgument(
              "The first dimension value of Input(Bias) must be [%d],"
              "But received [%d].",
              C, b_dims[0]));
T
tink2123 已提交
105
    }
106

107 108 109 110 111 112 113 114 115
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", "Out");
  }
};

class AffineChannelOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
116 117
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "AffineChannelGrad");
118
    if (ctx->HasOutput(framework::GradVarName("X"))) {
119 120
      OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale",
                     "AffineChannelGrad");
121 122 123 124 125
      ctx->SetOutputDim(framework::GradVarName("X"),
                        ctx->GetInputDim(framework::GradVarName("Out")));
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      // Scale@GRAD and Bias@GRAD must exist at the same time.
126 127 128
      OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Bias")), "Output",
                     framework::GradVarName("Bias"), "AffineChannelGrad");
      OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AffineChannelGrad");
129 130 131 132 133 134
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Scale"));
    }
  }
Z
Zeng Jinle 已提交
135 136 137 138

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
139 140 141
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
142
  }
143 144
};

H
hong 已提交
145 146
template <typename T>
class AffineChannelGradMaker : public framework::SingleGradOpMaker<T> {
147
 public:
H
hong 已提交
148
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
149

150
  void Apply(GradOpPtr<T> op) const override {
151
    op->SetType("affine_channel_grad");
H
hong 已提交
152 153 154
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Scale", this->Input("Scale"));
155

H
hong 已提交
156
    op->SetAttrMap(this->Attrs());
157

H
hong 已提交
158 159 160
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
161 162 163
  }
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

template <typename DeviceContext, typename T>
class AffineChannelKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");

    auto* y = ctx.Output<framework::Tensor>("Out");
    y->mutable_data<T>(ctx.GetPlace());

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));

    auto dims = x->dims();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = x->numel() / N / C;

    auto* scale_d = scale->data<T>();
    auto* bias_d = bias->data<T>();
    ConstEigenVectorArrayMap<T> a_e(scale_d, C);
    ConstEigenVectorArrayMap<T> b_e(bias_d, C);

    auto* x_d = x->data<T>();
    auto* y_d = y->data<T>();
    if (layout == framework::DataLayout::kNCHW) {
      int stride = C * HxW;
      for (int i = 0; i < N; i++) {
        ConstEigenArrayMap<T> x_e(x_d, HxW, C);
        EigenArrayMap<T> y_e(y_d, HxW, C);
        y_e = (x_e.rowwise() * a_e.transpose()).rowwise() + b_e.transpose();
        x_d += stride;
        y_d += stride;
      }
    } else {
      int num = N * HxW;
      ConstEigenArrayMap<T> x_e(x_d, C, num);
      EigenArrayMap<T> y_e(y_d, C, num);
      y_e = (x_e.colwise() * a_e).colwise() + b_e;
    }
  }
};

template <typename DeviceContext, typename T>
class AffineChannelGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dscale =
        ctx.Output<framework::Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));

    auto dims = x->dims();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = x->numel() / N / C;

    auto* dy_d = dy->data<T>();
    auto* scale_d = scale->data<T>();
    ConstEigenVectorArrayMap<T> scale_e(scale_d, C);

    T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* dscale_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* dbias_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr;
    EigenVectorArrayMap<T> dscale_e(dscale_d, C);
    EigenVectorArrayMap<T> dbias_e(dbias_d, C);

    if (layout == framework::DataLayout::kNCHW) {
      // compute dscale and dbias
255 256
      int stride = C * HxW;
      auto* original_dy_d = dy_d;
257
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
258
        auto* x_d = x->data<T>();
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        for (int i = 0; i < N; i++) {
          ConstEigenArrayMap<T> x_e(x_d, HxW, C);
          ConstEigenArrayMap<T> dy_e(dy_d, HxW, C);
          if (i == 0) {
            dscale_e = (x_e * dy_e).colwise().sum();
          } else {
            dscale_e += (x_e * dy_e).colwise().sum();
          }
          if (i == 0) {
            dbias_e = dy_e.colwise().sum();
          } else {
            dbias_e += dy_e.colwise().sum();
          }
          x_d += stride;
          dy_d += stride;
        }
      }
276

277 278
      // compute dx
      if (dx) {
279 280 281 282 283 284 285 286
        dy_d = original_dy_d;
        for (int i = 0; i < N; i++) {
          ConstEigenArrayMap<T> dy_e(dy_d, HxW, C);
          EigenArrayMap<T> dx_e(dx_d, HxW, C);
          dx_e = dy_e.rowwise() * scale_e.transpose();
          dy_d += stride;
          dx_d += stride;
        }
287
      }
288 289 290
    } else {
      int num = N * HxW;
      ConstEigenArrayMap<T> dy_e(dy_d, C, num);
291 292
      // compute dscale and dbias
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
293
        auto* x_d = x->data<T>();
294 295 296 297
        ConstEigenArrayMap<T> x_e(x_d, C, num);
        dscale_e = (x_e * dy_e).rowwise().sum();
        dbias_e = dy_e.rowwise().sum();
      }
298 299 300 301 302 303

      // compute dx
      if (dx) {
        EigenArrayMap<T> dx_e(dx_d, C, num);
        dx_e = dy_e.colwise() * scale_e;
      }
304 305 306 307
    }
  }
};

Z
Zeng Jinle 已提交
308 309 310 311 312
class AffineChannelNoNeedBufferVarsInference
    : public framework::NoNeedBufferVarsInference {
 public:
  using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference;

313 314 315 316 317 318
  const std::unordered_set<std::string>& operator()(
      const framework::InferNoNeedBufferVarsContext& ctx) const final {
    static const std::unordered_set<std::string> kX({"X"});
    if (!ctx.HasOutput(framework::GradVarName("Scale")) &&
        !ctx.HasOutput(framework::GradVarName("Bias"))) {
      return kX;
Z
Zeng Jinle 已提交
319
    } else {
320
      return Empty();
Z
Zeng Jinle 已提交
321 322 323 324
    }
  }
};

325 326 327 328 329
DECLARE_INPLACE_OP_INFERER(AffineChannelInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(AffineChannelGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

330 331 332 333 334 335 336
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(affine_channel, ops::AffineChannelOp,
H
hong 已提交
337 338 339
                  ops::AffineChannelOpMaker,
                  ops::AffineChannelGradMaker<paddle::framework::OpDesc>,
                  ops::AffineChannelGradMaker<paddle::imperative::OpBase>,
340
                  ops::AffineChannelInplaceInferer);
Z
Zeng Jinle 已提交
341
REGISTER_OPERATOR(affine_channel_grad, ops::AffineChannelOpGrad,
342 343
                  ops::AffineChannelNoNeedBufferVarsInference,
                  ops::AffineChannelGradInplaceInferer);
344 345 346 347 348 349

REGISTER_OP_CPU_KERNEL(affine_channel, ops::AffineChannelKernel<CPU, float>,
                       ops::AffineChannelKernel<CPU, double>);
REGISTER_OP_CPU_KERNEL(affine_channel_grad,
                       ops::AffineChannelGradKernel<CPU, float>,
                       ops::AffineChannelGradKernel<CPU, double>);