detection.py 123.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'detection_map',
    'rpn_target_assign',
43 44
    'retinanet_target_assign',
    'sigmoid_focal_loss',
45 46 47 48
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
49
    'generate_mask_labels',
50 51 52 53
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
54
    'yolo_box',
55
    'box_clip',
J
jerrywgz 已提交
56
    'multiclass_nms',
57
    'retinanet_detection_output',
58
    'distribute_fpn_proposals',
59
    'box_decoder_and_assign',
60
    'collect_fpn_proposals',
C
chengduoZH 已提交
61
]
62 63


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
    **Target Assign Layer for Retinanet .**

    This layer can be, for given the Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each anchor, these target labels are used for training
    retinanet. Every anchor is assigned with a length :attr:`num_classes`
    one-hot vector of classification targets, and a 4-vector of box regression
    targets. The assignment rules are as followed:
    
    1. Anchors are assigned to ground-truth boxes when: (i) it has the highest
    IoU overlap with a ground-truth box, or (ii) it has an IoU overlap higher
    than positive_overlap(0.5) with any ground-truth box.
    
    2. Anchors are assigned to background when its IoU ratio is lower than
    negative_overlap (0.4) for all ground-truth boxes.
    
    When an anchor is assigned with a ground-truth box which is the i-th category,
    the i-th entry in its C vector of targets is set to 1 and all other entries
    are set to 0. When an anchor is assigned with background, all entries are set
    to 0. Anchors that are not assigned do not contribute to the training
    objective. The regression targets are the encoded ground-truth boxes
    associated with the assigned anchors.
 
    Args:
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        cls_logits(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            number of classes (excluding background), M is number of bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
        gt_boxes(Variable): The ground-truth bounding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_labels(variable): The ground-truth labels are a 2D LoDTensor with
            shape [Ng, 1], Ng is the total number of ground-truth labels of
            mini-batch input.
        is_crowd(Variable): A 1-D LoDTensor which indicates ground-truth is crowd.
        im_info(Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
            3 is the height, width and scale.
        num_classes(int32): The number of classes.
        positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
        tuple:
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox, bbox_inside_weight, fg_num) is returned. The
               predicted_scores and predicted_location are the predicted result
               of the retinanet.The target_label and target_bbox are the ground
               truth, respectively. The predicted_location is a 2D Tensor with
               shape [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, C], and the shape of target_label is [F + B, 1], B is the
               number of the background anchors, the F and B is depends on the
               input of this operator. Bbox_inside_weight represents whether the
               predicted location is fake foreground or not and the shape is [F, 4].
               Fg_num is the foreground number (including fake foreground) which
               is needed by focal loss.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          bbox_pred = layers.data(name='bbox_pred', shape=[1, 100, 4],
                            append_batch_size=False, dtype='float32')
          cls_logits = layers.data(name='cls_logits', shape=[1, 100, 10],
                            append_batch_size=False, dtype='float32')
          anchor_box = layers.data(name='anchor_box', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          anchor_var = layers.data(name='anchor_var', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
          gt_labels = layers.data(name='gt_labels', shape=[10, 1],
                            append_batch_size=False, dtype='float32')
          is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
          im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
          loc_pred, score_pred, loc_target, score_target, bbox_inside_weight, fg_num =
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


222 223
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
224
                      anchor_box,
225
                      anchor_var,
226 227 228
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
229
                      rpn_batch_size_per_im=256,
230 231
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
232
                      rpn_positive_overlap=0.7,
233 234
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
235
    """
H
haowang101779990 已提交
236
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
254
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
255 256 257
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
258 259 260
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
261 262 263 264 265 266
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
267 268
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
269
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
270 271
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
272 273 274
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
275
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
276 277 278
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
279 280 281 282 283 284 285 286 287
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
288
        tuple:
Y
Yuan Gao 已提交
289
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
290 291
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
292 293 294 295 296 297 298
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
299
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
300 301
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
302 303 304 305

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            import paddle.fluid as fluid
            bbox_pred = fluid.layers.data(name='bbox_pred', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
            cls_logits = fluid.layers.data(name='cls_logits', shape=[100, 1],
                            append_batch_size=False, dtype='float32')
            anchor_box = fluid.layers.data(name='anchor_box', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            anchor_var = fluid.layers.data(name='anchor_var', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight=
                fluid.layers.rpn_target_assign(bbox_pred, cls_logits,
                anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
324

Y
Yuan Gao 已提交
325 326 327
    """

    helper = LayerHelper('rpn_target_assign', **locals())
328
    # Assign target label to anchors
J
jerrywgz 已提交
329 330 331 332 333 334 335
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
336 337
    helper.append_op(
        type="rpn_target_assign",
338 339 340 341 342 343
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
344 345 346
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
347
            'TargetLabel': target_label,
J
jerrywgz 已提交
348
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
349
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
350 351 352
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
353
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
354 355
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
356 357
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
358 359
        })

360 361 362 363
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
364
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
365

366 367 368 369
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
370

J
jerrywgz 已提交
371
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
372 373


374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
def sigmoid_focal_loss(x, label, fg_num, gamma=2, alpha=0.25):
    """
    **Sigmoid Focal Loss Operator.**

    Focal loss is used to address the foreground-background class imbalance existed
    on the training phase of one-stage detectors. This operator computes the sigmoid
    value for each element in the input tensor, after which focal loss is measured.
    
    The focal loss is given as followed:

    .. math::
        loss_j = (-label_j * alpha * {(1 - \\sigma(x_j))}^{gamma} * \\log(\\sigma(x_j)) -
        (1 - labels_j) * (1 - alpha) * {(\sigma(x_j)}^{ gamma} * \\log(1 - \\sigma(x_j)))
        / fg\_num, j = 1,...,K

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}

    Args:
        x(Variable): A 2-D tensor with shape [N, D], where N is the batch size and D is the number
            of classes (excluding background). This input is a tensor of logits computed by the
            previous operator.
        label(Variable): A 2-D tensor with shape [N, 1], which is the probabilistic labels.
        fg_num(Variable): A 1-D tensor with shape [1], which is the number of foreground.

        gamma(float): Hyper-parameter to balance the easy and hard examples. Default value is
            set to 2.0.
        alpha(float): Hyper-parameter to balance the positive and negative example. Default value
            is set to 0.25.

    Returns:
        out(Variable): A 2-D tensor with shape [N, D], which is the focal loss.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            input = fluid.layers.data(
                name='data', shape=[10,80], append_batch_size=False, dtype='float32')
            label = fluid.layers.data(
                name='label', shape=[10,1], append_batch_size=False, dtype='int32')
            fg_num = fluid.layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32')
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
                                                   gamma=2.,
                                                   alpha=0.25)
    """

    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
442 443
def detection_output(loc,
                     scores,
444 445 446 447 448 449 450 451 452
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
453
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
454

455 456
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
457

458 459 460 461 462 463
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
464 465 466 467 468 469

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
470 471 472 473
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
496 497
        Variable:

498
            The detection outputs is a LoDTensor with shape [No, 6].
499 500 501 502 503 504
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
505
            LoD will be set to {1}, and output tensor only contains one
506
            value, which is -1.
J
jerrywgz 已提交
507 508
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
509 510 511 512

    Examples:
        .. code-block:: python

513 514 515
            import paddle.fluid as fluid

            pb = fluid.layers.data(name='prior_box', shape=[10, 4],
516
                         append_batch_size=False, dtype='float32')
517
            pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
518
                          append_batch_size=False, dtype='float32')
519
            loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
520
                          append_batch_size=False, dtype='float32')
521
            scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
522
                          append_batch_size=False, dtype='float32')
523
            nmsed_outs = fluid.layers.detection_output(scores=scores,
524 525 526 527 528
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
529 530 531 532 533
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
534
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
535
    scores = nn.transpose(scores, perm=[0, 2, 1])
536
    scores.stop_gradient = True
X
Xin Pan 已提交
537 538
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
539 540 541 542 543 544 545 546 547 548 549 550 551
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
552
    nmsed_outs.stop_gradient = True
553
    return nmsed_outs
C
chengduoZH 已提交
554 555


X
Xin Pan 已提交
556 557 558 559 560 561 562 563 564 565 566
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
567 568 569 570 571 572 573 574 575

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            iou = fluid.layers.iou_similarity(x=x, y=y)
X
Xin Pan 已提交
576 577 578
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
579
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
599 600
              name=None,
              axis=0):
X
Xin Pan 已提交
601
    """
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
640 641

    Args:
642 643 644 645 646 647 648
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
                             [M, 4] holds M boxes, each box is represented as
                             [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
                             left top coordinate of the anchor box, if the 
                             input is image feature map, they are close to 
                             the origin of the coordinate system. [xmax, ymax]
                             is the right bottom coordinate of the anchor box.       
649 650 651 652
        prior_box_var(Variable|list|None): prior_box_var supports two types 
                              of input. One is variable with shape [M, 4] 
                              holds M group. The other one is list consist of 
                              4 elements shared by all boxes. 
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
                              [N, 4] when code_type is 'encode_center_size'. 
                              This input also can be a 3-D Tensor with shape 
                              [N, M, 4] when code_type is 'decode_center_size'. 
                              Each box is represented as  
                              [xmin, ymin, xmax, ymax]. This tensor can 
                              contain LoD information to represent a batch 
                              of inputs. 
        code_type(string): The code type used with the target box. It can be
                           encode_center_size or decode_center_size
        box_normalized(int): Whether treat the priorbox as a noramlized box.
                             Set true by default.
        name(string): The name of box coder.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
                   for example, if axis is 0 and TargetBox has shape
                   [N, M, 4] and PriorBox has shape [M, 4], then PriorBox
                   will broadcast to [N, M, 4] for decoding. It is only valid
                   when code type is decode_center_size. Set 0 by default. 
X
Xin Pan 已提交
671 672

    Returns:
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        output_box(Variable): When code_type is 'encode_center_size', the 
                              output tensor of box_coder_op with shape 
                              [N, M, 4] representing the result of N target 
                              boxes encoded with M Prior boxes and variances. 
                              When code_type is 'decode_center_size', 
                              N represents the batch size and M represents 
                              the number of deocded boxes.

    Examples:
 
        .. code-block:: python
 
            prior_box = fluid.layers.data(name='prior_box', 
                                          shape=[512, 4], 
                                          dtype='float32',
                                          append_batch_size=False)
            target_box = fluid.layers.data(name='target_box',
                                           shape=[512,81,4],
                                           dtype='float32',
                                           append_batch_size=False)
            output = fluid.layers.box_coder(prior_box=prior_box,
                                            prior_box_var=[0.1,0.1,0.2,0.2],
                                            target_box=target_box,
                                            code_type="decode_center_size",
                                            box_normalized=False,
                                            axis=1)

X
Xin Pan 已提交
700 701 702 703
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
704 705
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
706 707 708 709
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

710 711 712 713 714 715 716 717 718 719 720 721
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
722 723
    helper.append_op(
        type="box_coder",
724 725
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
B
Bai Yifan 已提交
740 741 742 743 744 745 746 747

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            input = fluid.layers.data(name='input', shape=[4, 10, 5, 5],
                                      append_batch_size=False, dtype='float32')
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
748 749 750
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
751
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
752 753 754 755 756 757 758 759 760 761 762 763
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
764 765
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
766 767
                gt_box,
                gt_label,
D
dengkaipeng 已提交
768
                anchors,
769
                anchor_mask,
D
dengkaipeng 已提交
770 771
                class_num,
                ignore_thresh,
772
                downsample_ratio,
773
                gt_score=None,
D
dengkaipeng 已提交
774
                use_label_smooth=True,
D
dengkaipeng 已提交
775 776 777 778 779 780
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
781
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
782 783 784 785
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
786 787
                          N is the batch number and B is the max box number in 
                          an image.
788
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
789
                            of [N, B].
D
dengkaipeng 已提交
790
        anchors (list|tuple): ${anchors_comment}
791
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
792 793
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
794
        downsample_ratio (int): ${downsample_ratio_comment}
795
        name (string): the name of yolov3 loss. Default None.
796
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
797
                            of [N, B]. Default None.
798
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
799 800

    Returns:
801
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
802 803 804

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
805 806
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
807
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
808 809 810
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
811
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
812 813

    Examples:
814 815 816
      .. code-block:: python

          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
817 818 819
          gt_box = fluid.layers.data(name='gt_box', shape=[6, 4], dtype='float32')
          gt_label = fluid.layers.data(name='gt_label', shape=[6], dtype='int32')
          gt_score = fluid.layers.data(name='gt_score', shape=[6], dtype='float32')
820 821
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
822 823
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
824 825
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
826 827 828 829 830
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
831
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
832
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
833
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
834
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
835
    if gt_score is not None and not isinstance(gt_score, Variable):
836
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
837 838
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
839 840
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
841 842 843 844 845
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
846 847 848
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
849 850 851 852 853 854 855

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

856 857 858
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

859 860
    inputs = {
        "X": x,
861 862
        "GTBox": gt_box,
        "GTLabel": gt_label,
863
    }
864
    if gt_score:
865
        inputs["GTScore"] = gt_score
866

D
dengkaipeng 已提交
867 868
    attrs = {
        "anchors": anchors,
869
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
870 871
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
872
        "downsample_ratio": downsample_ratio,
873
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
874 875 876 877
    }

    helper.append_op(
        type='yolov3_loss',
878
        inputs=inputs,
879 880 881 882 883
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
884 885 886 887
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
888
@templatedoc(op_type="yolo_box")
889 890 891 892 893 894 895
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
896 897 898 899 900
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
901
        img_size (Variable): ${img_size_comment}
D
dengkaipeng 已提交
902 903 904 905
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
906
        name (string): the name of yolo box layer. Default None.
D
dengkaipeng 已提交
907 908

    Returns:
D
dengkaipeng 已提交
909
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
910 911
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
912 913 914 915 916 917 918 919

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
920

D
dengkaipeng 已提交
921 922
    .. code-block:: python

X
xiaoting 已提交
923
        import paddle.fluid as fluid
D
dengkaipeng 已提交
924 925
        x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
926
        loss = fluid.layers.yolo_box(x=x, img_size=608, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
927 928 929 930 931
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
932 933 934
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
935
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
936
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
937
    if not isinstance(class_num, int):
938
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
939
    if not isinstance(conf_thresh, float):
940
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
941 942 943 944 945 946 947

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
948
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
949 950 951 952 953
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
954 955 956 957
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
958 959 960 961 962 963 964 965
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
966
@templatedoc()
967 968
def detection_map(detect_res,
                  label,
969 970
                  class_num,
                  background_label=0,
971 972
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
973 974 975 976
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
1018 1019
    helper = LayerHelper("detection_map", **locals())

1020
    def __create_var(type):
X
Xin Pan 已提交
1021
        return helper.create_variable_for_type_inference(dtype=type)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

1034 1035 1036 1037 1038
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1039
            'HasState': has_state,
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1053 1054
            'ap_type': ap_version,
            'class_num': class_num,
1055
        })
1056
    return map_out
1057 1058


1059 1060 1061 1062
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1063
    """
Y
yuyang18 已提交
1064 1065
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1066
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1067 1068 1069 1070 1071 1072 1073 1074
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1075 1076 1077
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1078

Y
yuyang18 已提交
1079
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1080 1081 1082
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1083 1084 1085
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1086 1087 1088 1089 1090
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
1091 1092 1093 1094 1095 1096
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
1097
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
1098
           'bipartite' or 'per_prediction'. [default 'bipartite'].
1099 1100
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1101
            on the maximum distance, 0.5 by default.
1102
    Returns:
Y
yuyang18 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1126 1127
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1128 1129 1130
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1131 1132 1133
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1134 1135 1136 1137
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1155

1156 1157 1158 1159 1160
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1161

1162
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1163

1164 1165 1166
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1167

1168 1169
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1170

1171
        Otherwise,
C
chengduoZH 已提交
1172

1173 1174
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1175

1176
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1177

1178 1179
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
1180

1181
    .. code-block:: text
C
chengduoZH 已提交
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
1198 1199 1200 1201 1202
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
1203 1204 1205 1206 1207 1208
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            import paddle.fluid as fluid
            x = fluid.layers.data(
                name='x',
                shape=[4, 20, 4],
                dtype='float',
                lod_level=1,
                append_batch_size=False)
            matched_id = fluid.layers.data(
                name='indices',
                shape=[8, 20],
                dtype='int32',
                append_batch_size=False)
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1225 1226
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1227 1228
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1256
             normalize=True,
1257 1258
             sample_size=None):
    """
Y
yuyang18 已提交
1259
    **Multi-box loss layer for object detection algorithm of SSD**
1260 1261 1262 1263 1264 1265 1266

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1267
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1268

1269
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1270

1271
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1272

1273
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1274

1275
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1276

1277
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1278

1279 1280
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1281

1282
    4. Assign classification and regression targets
Y
yuyang18 已提交
1283

1284
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1285

1286
      4.2. Assign regression targets.
Y
yuyang18 已提交
1287

1288
      4.3. Assign classification targets.
Y
yuyang18 已提交
1289

1290
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1291

1292
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1293

1294
      5.1 Compute localization loss.
Y
yuyang18 已提交
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
1319
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
1320
        neg_overlap (float): The negative overlap upper bound for the unmatched
1321
            predictions. Use only when mining_type is 'max_negative',
1322 1323 1324 1325
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
1326
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
1327 1328
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1329
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1330
            of output locations, True by default.
1331 1332
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1333 1334

    Returns:
Y
yuyang18 已提交
1335 1336
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
1337 1338

    Raises:
Y
yuyang18 已提交
1339 1340
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1360 1361 1362 1363 1364 1365 1366
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1367
    conf_shape = nn.shape(confidence)
1368 1369

    def __reshape_to_2d(var):
1370
        return nn.flatten(x=var, axis=2)
1371 1372 1373 1374 1375

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1376 1377
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1378 1379 1380

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1381 1382
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1383
    gt_label.stop_gradient = True
1384 1385 1386 1387 1388 1389 1390
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1391
    target_label.stop_gradient = True
1392 1393
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1394
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1395
    actual_shape.stop_gradient = True
1396
    conf_loss = nn.reshape(
1397
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
1398
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1399
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1400
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1401 1402
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1417
            'neg_dist_threshold': neg_overlap,
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1443

1444 1445 1446 1447
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1448 1449 1450 1451
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1452 1453 1454 1455 1456 1457 1458 1459
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1460 1461 1462 1463
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1464 1465
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1466
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1467
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
1468 1469 1470 1471 1472
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1473
    return loss
C
chengduoZH 已提交
1474 1475


1476 1477 1478 1479
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1480
              aspect_ratios=[1.],
1481 1482 1483 1484 1485
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1486 1487
              name=None,
              min_max_aspect_ratios_order=False):
1488
    """
Q
update  
qiaolongfei 已提交
1489
    **Prior Box Operator**
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1501
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1502 1503
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1504 1505
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1506 1507 1508 1509
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1510
       step(list|turple): Prior boxes step across width and height, If
1511
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1512 1513
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1514 1515
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1516
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1517
            in order of [min, max, aspect_ratios], which is consistent with
1518 1519 1520
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1521 1522

    Returns:
Q
update  
qiaolongfei 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1536 1537 1538 1539


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1540

R
ruri 已提交
1541 1542
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
Q
update  
qiaolongfei 已提交
1543
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1544
                input=input,
Q
update  
qiaolongfei 已提交
1545 1546 1547 1548
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1549 1550 1551 1552
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1568 1569 1570 1571 1572 1573 1574 1575
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1576 1577
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1578 1579
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1580 1581
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1582 1583
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1584 1585
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1607
                      flatten_to_2d=False,
R
ruri 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1644 1645
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1646 1647 1648 1649 1650 1651
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1652 1653 1654 1655
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1656 1657

        variances: the expanded variances of PriorBox.
1658 1659 1660 1661
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1662 1663 1664 1665 1666


    Examples:
        .. code-block:: python

R
ruri 已提交
1667 1668
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
R
ruri 已提交
1669
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1670
                input=input,
R
ruri 已提交
1671
                image=images,
1672 1673 1674 1675 1676
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1707 1708 1709 1710
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1726
def multi_box_head(inputs,
C
chengduoZH 已提交
1727 1728
                   image,
                   base_size,
C
chengduoZH 已提交
1729
                   num_classes,
C
chengduoZH 已提交
1730
                   aspect_ratios,
1731 1732
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1733 1734
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1735 1736 1737 1738
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1739 1740
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1741
                   clip=False,
C
chengduoZH 已提交
1742
                   kernel_size=1,
C
chengduoZH 已提交
1743
                   pad=0,
C
chengduoZH 已提交
1744
                   stride=1,
1745 1746
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1747
    """
C
chengduoZH 已提交
1748 1749
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1750
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1751
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1752 1753

    Args:
1754
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1755
            of all Variables is NCHW.
C
chengduoZH 已提交
1756 1757
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1758 1759
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1782
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1783 1784 1785 1786 1787 1788
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1789
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1790
            in order of [min, max, aspect_ratios], which is consistent with
1791 1792 1793
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1794 1795

    Returns:
Q
update  
qiaolongfei 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1811

C
chengduoZH 已提交
1812 1813 1814

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
          import paddle.fluid as fluid

          images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
          conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
          conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
          conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
          conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
          conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
          conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')

Q
update  
qiaolongfei 已提交
1826
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
1827
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1837 1838
    """

C
chengduoZH 已提交
1839
    def _reshape_with_axis_(input, axis=1):
1840
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1841
        return out
1842

1843 1844
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1845

C
chengduoZH 已提交
1846 1847 1848 1849
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1850 1851
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1852

C
chengduoZH 已提交
1853 1854 1855 1856 1857
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1858
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1859 1860 1861
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1862
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1863 1864 1865 1866 1867
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1891 1892
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1893 1894
    box_results = []
    var_results = []
C
chengduoZH 已提交
1895 1896
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1897 1898
        max_size = max_sizes[i]

1899
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1900
            min_size = [min_size]
C
chengduoZH 已提交
1901 1902
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1903 1904 1905 1906

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1907
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1908
                aspect_ratio = [aspect_ratio]
1909
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1910

1911
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1912 1913
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1914 1915 1916 1917 1918

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1919

1920
        # get loc
Y
Yuan Gao 已提交
1921
        num_loc_output = num_boxes * 4
1922
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1923
            input=input,
1924 1925 1926 1927 1928
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1929
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1930
        compile_shape = [
1931
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1932
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1933
        ]
1934 1935 1936
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1937
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1938

1939
        # get conf
C
chengduoZH 已提交
1940
        num_conf_output = num_boxes * num_classes
1941
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1942
            input=input,
1943 1944 1945 1946
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1947
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1948 1949
        new_shape = [0, -1, num_classes]
        compile_shape = [
1950 1951 1952
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1953
        ]
1954 1955 1956 1957
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1958
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1959

C
chengduoZH 已提交
1960 1961 1962
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1963 1964
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1974 1975
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1976

1977 1978
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1979
    return mbox_locs_concat, mbox_confs_concat, box, var
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
2000 2001
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
2002
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
2003
                                        anchors, e.g. [0.5, 1.0, 2.0].
2004
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
2005 2006
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
2007 2008 2009 2010
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
2024 2025 2026 2027 2028 2029


    Examples:

        .. code-block:: python

J
jerrywgz 已提交
2030 2031
            conv1 = fluid.layers.data(name='conv1', shape=[48, 16, 16], dtype='float32')
            anchor, var = fluid.layers.anchor_generator(
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2065 2066
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2067 2068 2069 2070 2071 2072 2073 2074 2075
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2076 2077


W
whs 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
S
SunGaofeng 已提交
2098
        transformed_width (integer): The width of transformed output.
W
whs 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2108
            import paddle.fluid as fluid
2109

S
SunGaofeng 已提交
2110 2111 2112
            x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
            out = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2113 2114 2115
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2116
    out = helper.create_variable_for_type_inference(dtype)
2117 2118
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2119 2120 2121 2122
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2123 2124 2125 2126 2127
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
            "Out2InWeights": out2in_w
        },
W
whs 已提交
2128 2129 2130 2131 2132 2133 2134 2135
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


2136 2137
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2138
                             is_crowd,
2139
                             gt_boxes,
2140
                             im_info,
2141 2142 2143 2144 2145 2146
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2147
                             class_nums=None,
A
AIFollowers 已提交
2148 2149 2150
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2151
    """
A
AIFollowers 已提交
2152

2153
    ** Generate Proposal Labels of Faster-RCNN **
A
AIFollowers 已提交
2154

B
buxingyuan 已提交
2155
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2156
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2157 2158 2159

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2160
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2161 2162
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2163
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2164
    then we apply random sampling to make sure
B
buxingyuan 已提交
2165
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
A
AIFollowers 已提交
2185 2186
	is_cls_agnostic(bool): class agnostic bbox regression will only represent fg and bg boxes.
        is_cascade_rcnn(bool): cascade rcnn model will change sampling policy when settting True.
B
Bai Yifan 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            rpn_rois = fluid.layers.data(name='rpn_rois', shape=[2, 4],
                           append_batch_size=False, dtype='float32')
            gt_classes = fluid.layers.data(name='gt_classes', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[8, 4],
                           append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[10, 3],
                           append_batch_size=False, dtype='float32')
            rois, labels_int32, bbox_targets, bbox_inside_weights,
            bbox_outside_weights = fluid.layers.generate_proposal_labels(
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2207 2208 2209 2210
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2220 2221 2222 2223 2224 2225

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2226
            'IsCrowd': is_crowd,
2227
            'GtBoxes': gt_boxes,
2228
            'ImInfo': im_info
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2244
            'class_nums': class_nums,
A
AIFollowers 已提交
2245 2246 2247
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

2339 2340
          import paddle.fluid as fluid

2341 2342 2343 2344 2345 2346 2347 2348
          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
2349
          # rois, roi_labels can be the output of
2350
          # fluid.layers.generate_proposal_labels.
2351 2352 2353 2354
          rois = fluid.layers.data(name="rois", shape=[4],
              dtype="float32", lod_level=1)
          roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
              dtype="int32", lod_level=1)
2355 2356 2357 2358 2359 2360
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2361
              labels_int32=roi_labels,
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2411 2412
    **Generate proposal Faster-RCNN**

2413 2414 2415 2416
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2417 2418 2419 2420
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2421 2422
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2423 2424 2425 2426 2427 2428
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2429 2430 2431 2432 2433 2434 2435 2436 2437
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2438
            between origin image size and the size of feature map.
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2450
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2451 2452 2453 2454
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
B
Bai Yifan 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
            scores = fluid.layers.data(name='scores', shape=[2, 4, 5, 5],
                         append_batch_size=False, dtype='float32')
            bbox_deltas = fluid.layers.data(name='bbox_deltas', shape=[2, 16, 5, 5],
                         append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[2, 3],
                         append_batch_size=False, dtype='float32')
            anchors = fluid.layers.data(name='anchors', shape=[5, 5, 4, 4],
                         append_batch_size=False, dtype='float32')
            variances = fluid.layers.data(name='variances', shape=[5, 5, 10, 4],
                         append_batch_size=False, dtype='float32')
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2473 2474 2475
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2476 2477 2478 2479
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2502 2503


J
jerrywgz 已提交
2504
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2505 2506
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2507
    For each input box, The formula is given as follows:
2508 2509 2510
        
    .. code-block:: text

J
jerrywgz 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2522 2523

    Args:
J
jerrywgz 已提交
2524
        input(variable): The input box, the last dimension is 4.
2525 2526 2527 2528
        im_info(variable): The information of image with shape [N, 3] with 
                            layout (height, width, scale). height and width
                            is the input size and scale is the ratio of input
                            size and original size.
J
jerrywgz 已提交
2529 2530 2531 2532
        name (str): The name of this layer. It is optional.
    
    Returns:
        Variable: The cliped tensor variable.
2533
        
J
jerrywgz 已提交
2534 2535
    Examples:
        .. code-block:: python
2536
        
J
jerrywgz 已提交
2537
            boxes = fluid.layers.data(
J
jerrywgz 已提交
2538
                name='boxes', shape=[8, 4], dtype='float32', lod_level=1)
J
jerrywgz 已提交
2539 2540
            im_info = fluid.layers.data(name='im_info', shape=[3])
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2541
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2542 2543 2544
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2545
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2546
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2547
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2548

2549 2550
    return output

J
jerrywgz 已提交
2551

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
                               nms_eta=1.):
    """
    **Detection Output Layer for Retinanet.**

    This operation is to get the detection results by performing following
    steps:

    1. Decode top-scoring bounding box predictions per FPN level according 
       to the anchor boxes.
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
        bboxes(List): A list of tensors from multiple FPN levels. Each
            element is a 3-D Tensor with shape [N, Mi, 4] representing the
            predicted locations of Mi bounding boxes. N is the batch size,
            Mi is the number of bounding boxes from i-th FPN level and each 
            bounding box has four coordinate values and the layout is
            [xmin, ymin, xmax, ymax].
        scores(List): A list of tensors from multiple FPN levels. Each
            element is a 3-D Tensor with shape [N, Mi, C] representing the
            predicted confidence predictions. N is the batch size, C is the
            class number (excluding background), Mi is the number of bounding
            boxes from i-th FPN level. For each bounding box, there are total
            C scores.
        anchors(List): A 2-D Tensor with shape [Mi, 4] represents the locations
            of Mi anchor boxes from all FPN level. Each bounding box has four
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
        im_info(Variable): A 2-D LoDTensor with shape [N, 3] represents the
            image information. N is the batch size, each image information
            includes height, width and scale.
        score_threshold(float): Threshold to filter out bounding boxes
            with a confidence score.
        nms_top_k(int): Maximum number of detections per FPN layer to be
            kept according to the confidences before NMS.
        keep_top_k(int): Number of total bounding boxes to be kept per image after
            NMS step. -1 means keeping all bounding boxes after NMS step.
        nms_threshold(float): The threshold to be used in NMS.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
        Variable:
            The detection output is a LoDTensor with shape [No, 6].
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid

            bboxes = layers.data(name='bboxes', shape=[1, 21, 4],
                append_batch_size=False, dtype='float32')
            scores = layers.data(name='scores', shape=[1, 21, 10],
                append_batch_size=False, dtype='float32')
            anchors = layers.data(name='anchors', shape=[21, 4],
                append_batch_size=False, dtype='float32')
            im_info = layers.data(name="im_info", shape=[1, 3],
                append_batch_size=False, dtype='float32')
            nmsed_outs = fluid.layers.retinanet_detection_output(
                                                    bboxes=[bboxes, bboxes],
                                                    scores=[scores, scores],
                                                    anchors=[anchors, anchors],
                                                    im_info=im_info,
                                                    score_threshold=0.05,
                                                    nms_top_k=1000,
                                                    keep_top_k=100,
                                                    nms_threshold=0.3,
                                                    nms_eta=1.)
    """

    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
2659 2660 2661 2662 2663
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2664
                   nms_threshold=0.3,
J
jerrywgz 已提交
2665 2666
                   normalized=True,
                   nms_eta=1.,
2667 2668
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2669
    """
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2731 2732 2733 2734
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2735

2736

2737 2738 2739
    Examples:
        .. code-block:: python

2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2773 2774

    return output
2775 2776 2777 2778 2779 2780 2781 2782 2783


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
J
jerrywgz 已提交
2784 2785 2786 2787 2788 2789
    In Feature Pyramid Networks (FPN) models, it is needed to distribute all 
    proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order
    of proposals, we return an array which indicates the original index of rois
    in current proposals. To compute FPN level for each roi, the formula is 
    given as follows:
2790
    
J
jerrywgz 已提交
2791
    .. math::
2792

J
jerrywgz 已提交
2793
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
2794

J
jerrywgz 已提交
2795 2796 2797
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
2798 2799

    Args:
J
jerrywgz 已提交
2800
        fpn_rois(variable): The input fpn_rois, the second dimension is 4.
2801 2802 2803 2804 2805 2806
        min_level(int): The lowest level of FPN layer where the proposals come 
                        from.
        max_level(int): The highest level of FPN layer where the proposals
                        come from.
        refer_level(int): The referring level of FPN layer with specified scale.
        refer_scale(int): The referring scale of FPN layer with specified level.
J
jerrywgz 已提交
2807 2808
        name(str|None): The name of this operator.        

2809
    Returns:
J
jerrywgz 已提交
2810 2811 2812 2813 2814
        tuple: 
               A tuple(multi_rois, restore_ind) is returned. The multi_rois is 
               a list of segmented tensor variables. The restore_ind is a 2D 
               Tensor with shape [N, 1], N is the number of total rois. It is
               used to restore the order of fpn_rois.
2815 2816 2817 2818 2819 2820 2821

    Examples:
        .. code-block:: python

            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
2822 2823 2824
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
2825 2826 2827 2828 2829
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
2830
    dtype = helper.input_dtype('fpn_rois')
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
2848 2849


2850
@templatedoc()
J
jerrywgz 已提交
2851 2852 2853 2854 2855 2856
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
2857 2858 2859 2860 2861 2862 2863
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
2864
        box_clip(${box_clip_type}): ${box_clip_comment}
J
jerrywgz 已提交
2865
        name(str|None): The name of this operator
2866
    Returns:
J
jerrywgz 已提交
2867 2868 2869 2870 2871 2872 2873
        decode_box(Variable), output_assign_box(Variable):

            two variables:

            - decode_box(${decode_box_type}): ${decode_box_comment}
            - output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}

2874 2875 2876
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
2877
            pb = fluid.layers.data(
J
jerrywgz 已提交
2878
                name='prior_box', shape=[4], dtype='float32')
J
jerrywgz 已提交
2879
            pbv = fluid.layers.data(
J
jerrywgz 已提交
2880 2881
                name='prior_box_var', shape=[4], 
                dtype='float32', append_batch_size=False)
J
jerrywgz 已提交
2882
            loc = fluid.layers.data(
J
jerrywgz 已提交
2883
                name='target_box', shape=[4*81], dtype='float32')
J
jerrywgz 已提交
2884
            scores = fluid.layers.data(
J
jerrywgz 已提交
2885
                name='scores', shape=[81], dtype='float32')
J
jerrywgz 已提交
2886
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
2887
                pb, pbv, loc, scores, 4.135)
2888 2889 2890 2891

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
2892
    decoded_box = helper.create_variable_for_type_inference(
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
2907
            "DecodeBox": decoded_box,
2908 2909
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
2910
    return decoded_box, output_assign_box
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
    Concat multi-level RoIs (Region of Interest) and select N RoIs 
    with respect to multi_scores. This operation performs the following steps:

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
        multi_ros(list): List of RoIs to collect
        multi_scores(list): List of scores
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
        name(str|None): A name for this layer(optional)
        
    Returns:
        Variable: Output variable of selected RoIs. 

    Examples:
        .. code-block:: python
           
            multi_rois = []
            multi_scores = []
            for i in range(4):
                multi_rois.append(fluid.layers.data(
                    name='roi_'+str(i), shape=[4], dtype='float32', lod_level=1))
            for i in range(4):
                multi_scores.append(fluid.layers.data(
                    name='score_'+str(i), shape=[1], dtype='float32', lod_level=1))

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois