conv_transpose_op.cc 20.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
21

J
Jacek Czaja 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
26 27 28
namespace paddle {
namespace operators {

29 30
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
31
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
32 33 34 35 36 37
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41 42
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
47 48 49 50
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_format"));
C
chengduoZH 已提交
51

52 53
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
                    "ConvTransposeOp intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
54 55 56
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
57 58 59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
      "ConvTransposeOp input dimension and strides dimension should "
      "be consistent.");
61 62 63 64
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
65

66
  const int64_t C =
67
      (data_layout != DataLayout::kNHWC ? in_dims[1]
68 69 70 71 72 73 74
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
      "The number of input channels of Op(ConvTransposeOp) should "
      "be equal to the number of filter's channels.");

  framework::DDim in_data_dims;
75
  if (data_layout != DataLayout::kNHWC) {
76 77 78 79 80 81 82 83 84 85 86
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
87
  if (data_layout != DataLayout::kNHWC) {
88 89
    output_shape.push_back(filter_dims[1] * groups);
  }
90
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
91
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
92
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
93 94
    auto infer_shape = (in_dims[i + offset] - 1) * strides[i] -
                       paddings[2 * i] - paddings[2 * i + 1] + filter_extent;
95
    if (output_size.size()) {
96 97 98 99 100
      PADDLE_ENFORCE_EQ((output_size[i] >= infer_shape &&
                         output_size[i] < infer_shape + strides[i]),
                        true,
                        "output_size of Op(ConvTransposeOp) should be "
                        "in appropriate range.");
101 102 103 104
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
105
  }
106 107 108
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
109
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
110 111
}

112 113
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
114
  framework::LibraryType library_{framework::LibraryType::kPlain};
115
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
116
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
117
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
118 119 120 121
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
122 123 124
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
125 126
  }
#endif
J
Jacek Czaja 已提交
127 128 129
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
130 131 132 133 134
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        "Conv Transpose MKLDNN does not support NHWC data format yet");
J
Jacek Czaja 已提交
135 136
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
137
  }
J
Jacek Czaja 已提交
138
#endif
139

140 141 142
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
143 144
}

Y
Yu Yang 已提交
145
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
146 147 148 149
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
150 151 152 153 154
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
155 156 157 158 159 160 161 162
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
163 164 165 166 167 168
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
169
  AddOutput("Output",
C
chengduoZH 已提交
170
            "(Tensor) The output tensor of convolution transpose operator. "
171
            "The format of output tensor is the same as input tensor.");
172 173 174 175
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
176 177 178 179
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
180 181 182 183 184
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
185 186
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
187
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
188
      "convolution transpose operator.")
C
chengduoZH 已提交
189
      .SetDefault({1, 1});
C
chengduoZH 已提交
190 191
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
192
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
193
      "transpose operator.")
C
chengduoZH 已提交
194
      .SetDefault({0, 0});
195 196 197 198
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
199 200 201 202 203
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
204 205 206 207 208 209 210 211
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
212 213 214 215
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
216 217 218 219 220 221 222 223 224
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
225 226 227 228 229 230
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
231
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
232
  AddComment(R"DOC(
C
chengduoZH 已提交
233 234
Convolution2D Transpose Operator.

C
chengduoZH 已提交
235
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
236
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
237
parameters is checked in the infer-shape.
238
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
239 240 241 242 243 244
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
245
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
246

Y
update  
yi.wu 已提交
247
For an example:
C
chengduoZH 已提交
248
  Input:
C
chengduoZH 已提交
249 250
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
251
  Output:
C
chengduoZH 已提交
252 253 254
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
255 256
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
257
  $$
C
chengduoZH 已提交
258 259 260
)DOC");
}

Y
Yu Yang 已提交
261
void Conv3DTransposeOpMaker::Make() {
262 263 264 265 266 267
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
268 269
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
270 271 272
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
273 274
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
275
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
276
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
277 278
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
279
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
280
            "Where N is batch size, C is "
C
chengduoZH 已提交
281 282
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
283 284 285 286
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
287 288 289 290 291 292
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
293
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
294
                            "(vector<int> default:{1, 1, 1}), the "
295
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
296
                            "convolution transpose operator.")
C
chengduoZH 已提交
297
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
298
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
299
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
300
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
301
      .SetDefault({0, 0, 0});
302 303 304 305
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
306 307 308 309
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
310 311 312
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
313 314 315 316
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
317 318 319 320 321 322 323 324 325
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
326 327 328 329 330 331
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
332
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
333
  AddComment(R"DOC(
C
chengduoZH 已提交
334 335
Convolution3D Transpose Operator.

C
chengduoZH 已提交
336
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
337
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
338
parameters is checked in the infer-shape.
339
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
340 341 342 343 344 345 346
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
347
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
348

349
Example:
C
chengduoZH 已提交
350
  Input:
C
chengduoZH 已提交
351 352
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
353
  Output:
C
chengduoZH 已提交
354 355 356
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
357 358 359
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
360
  $$
C
chengduoZH 已提交
361 362 363
)DOC");
}

C
chengduoZH 已提交
364
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
365 366 367 368 369 370 371 372 373 374
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

375 376 377
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
378
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
379 380 381 382 383 384
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
385 386 387 388 389 390 391
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

392
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
393 394 395
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
396 397
}

S
sneaxiy 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
class ConvTransposeGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    if (ForwardOp().Inputs().count("Bias") > 0) {
      op->SetInput("Bias", Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    }
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

C
chengduoZH 已提交
420 421 422 423
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
424

425
// conv2d_transpose
Y
Yang Yang 已提交
426 427
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
428
                  ops::ConvTransposeGradOpDescMaker);
429
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
430 431

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
432
    conv2d_transpose,
Q
QI JUN 已提交
433 434
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
435
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
436
    conv2d_transpose_grad,
Q
QI JUN 已提交
437 438 439
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
440

441
// conv3d_transpose
Y
Yang Yang 已提交
442 443
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
S
sneaxiy 已提交
444
                  ops::ConvTransposeGradOpDescMaker);
445
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
446 447

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
448
    conv3d_transpose,
Q
QI JUN 已提交
449 450
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
451
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
452
    conv3d_transpose_grad,
Q
QI JUN 已提交
453 454 455
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
456 457 458 459

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
S
sneaxiy 已提交
460
                  ops::ConvTransposeGradOpDescMaker);
461 462 463 464 465 466 467 468 469 470 471
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);